
- •8 Экспериментальное измерение реологических свойств ньютоновских и неньютоновских жидкостей
- •8.1 Закономерности течения ньютоновских жидкостей
- •8.1.1 Течение Куэтта
- •8.1.2 Ньютоновские жидкости
- •8.1.3 Изотермическое ламинарное движение ньютоновской жидкости в круглой трубе под действием постоянного перепада давления
- •8.1.3.1 Особенности течения ньютоновской жидкости в круглой трубе
- •8.1.3.2 Вычисление профиля скорости установившегося течения ньютоновской жидкости в круглой трубе
- •8.1.3.3 Вычисление средней скорости и расхода ньютоновской жидкости при течении в круглой трубе
- •8.1.3.4 Распределение касательного напряжения по радиусу при течении ньютоновской жидкости в круглой трубе
- •8.1.4.1 Вычисление профиля скорости течения ньютоновской жидкости в зазоре между цилиндрами
- •8.1.4.2 Распределение касательного напряжения по радиусу при установившемся ламинарном течении ньютоновской жидкости в зазоре между коаксиальными цилиндрами
- •8.2 Закономерности течения неньютоновских жидкостей
- •8.2.1 Примеры неньютоновских моделей текучих систем
- •8.2.1.1 Вязкопластичные жидкости Шведова-Бингама
- •8.2.1.1.1 Кривые течения вязкопластичных жидкостей
- •8.2.1.1.2 Коэффициент пластической вязкости жидкости
- •8.2.1.1.3 Кажущаяся вязкость жидкости
- •8.2.1.1.4 Течение вязкопластичной среды Шведова-Бингама в круглой трубе
- •8.2.1.2 Степенное реологическое уравнение состояния
- •8.2.1.2.1 Краткие сведения о реологических свойствах красок
- •8.2.1.2.2 Достоинства и недостатки степенного закона
- •8.2.1.2.3 Течение в круглой трубе неньютоновских жидкостей, подчиняющихся степенному закону Оствальда
- •8.2.1.3 Типичные кривые течения и основные эмпирические модели неньютоновских жидкостей [33]
- •8.1 Основные модели псевдопластичных (нелинейновязких) сред для одноосного сдвигового течения [33]
- •8.2 Основные модели вязкопластичных сред для одноосного сдвигового течения [33]
- •8.3 Методы и устройства для измерения вязкости ньютоновских жидкостей и реологических характеристик реостабильных неньютоновских жидкостей
- •8.3.1 Вискозиметрические приборы, применяемые для контроля показателей качества процессов, продукции, полупродуктов и сырья в промышленности
- •8.3.1.1 Вискозиметрические воронки
- •8.3.1.2 Капиллярные вискозиметры
- •8.3.1.3 Вискозиметры с падающим шариком
- •8.3.1.4 Пузырьковые вискозиметры
- •8.3.1.5 Ротационные вискозиметры
- •8.3.1.6 Недостатки промышленных вискозиметрических приборов
- •Различных неньютоновских жидкостей:
- •8.3.2 Вискозиметрические приборы для научных исследований
- •8.3.2.1 Капиллярные вискозиметры для научных исследований
- •8.3.2.1.1 Устройство капиллярного вискозиметра для научных исследований
- •8.3.2.1.2 Порядок проведения эксперимента с применением капиллярного вискозиметра (рис. 8.12)
- •1 Подготовка капиллярного вискозиметра к проведению эксперимента:
- •2 Проведение эксперимента с целью определения одной точки кривой течения исследуемой жидкости:
- •3 Завершение экспериментов или переход к экспериментальному исследованию новой жидкости:
- •8.3.2.1.3 Методика обработки экспериментальных данных, полученных с помощью капиллярного вискозиметра
- •Вычисление консистентных переменных p и V по экспериментальным данным, полученным с применением капиллярного вискозиметра
- •Вычисление кажущейся, эквивалентной и эффективной вязкостей по данным, полученным с применением капиллярного вискозиметра
- •Методика построения кривой течения для неньютоновских жидкостей по экспериментально определенной зависимости
- •Определение параметров k и n степенного закона Оствальда по данным вискозиметрических измерений
- •8.3.2.2 Ротационные вискозиметры для научных исследований
- •8.3.2.2.1 Ротационные вискозиметры с чувствительным преобразователем типа цилиндр-цилиндр Конструкции ротационных вискозиметров с чувствительным преобразователем в виде пары соосных цилиндров
- •Порядок проведения экспериментов с применением ротационных вискозиметров с преобразователем типа цилиндр-цилиндр
- •1 Подготовка ротационного вискозиметра к работе:
- •2 Проведение эксперимента с целью определения координат точек кривой течения исследуемой жидкости:
- •3 Завершение экспериментов или переход к исследованию новой неньютоновской жидкости:
- •Методика обработки экспериментальных данных, полученных с помощью ротационного вискозиметра с преобразователем типа цилиндр-цилиндр
- •Методика обработки экспериментальных данных, полученных с применением ротационного вискозиметра с чувствительным преобразователем типа диск-конус
8.2 Основные модели вязкопластичных сред для одноосного сдвигового течения [33]
Название модели (закона) |
Формула (уравнение) |
1 Модель Шведова-Бингама |
|
2 Модель Гершеля-Балкли |
|
3 Модель Бриана |
|
4 Модель Кроули-Китца |
|
5 Модель Кэссона |
|
6 Модель Шульмана |
|
7 Модель Кутателадзе- Хабахпашевой |
|
О б о з н а ч е н
и я:
|
Псевдопластичные и вязкопластичные среды относятся к группе так называемых реостабильных неньютоновских жидкостей. Реологические характеристики таких жидкостей не зависят от продолжительности сдвигового течения, остаются постоянными во времени независимо от предыстории жидкости.
Кроме достаточно подробно рассмотренных выше псевдопластичных и вязкопластичных сред, наиболее часто используемые модели которых приведены в табл. 8.1 и 8.2, на практике приходится иметь дело и с другими неньютоновскими жидкостями.
Большое внимание специалисты-реологи уделяют жидкостям с так называемой нестационарной реологией. Реологические характеристики таких жидкостей существенно зависят от их предыстории, в частности, от продолжительности сдвигового течения.
Среди жидкостей с нестационарной реологией следует выделить две их разновидности [33].
1 Тиксотропные среды. В состоянии покоя в объеме такой среды происходит образование определенной структуры, что обычно приводит не только к повышению кажущейся ньютоновской вязкости при нулевой скорости сдвига, но и к появлению предела текучести . Например, чтобы привести в движение тиксотропную среду, длительно покоившуюся перед этим в трубе, насос первоначально должен развить большую мощность. После того когда течение начнется, то под действием напряжения сдвига происходит постепенное разрушение структуры, имевшейся до начала течения в объеме тиксотропной среды, что приводит к заметному уменьшению нагрузки насоса и снижению потребляемой мощности. В результате продолжительного воздействия сдвиговых напряжений, тиксотропный материал приобретает реологические свойства, не зависящие от времени. Следовательно, предельные условия течения (в частности, повышенная нагрузка насоса) характерны только для начального промежутка времени, на протяжении которого происходит разрушение пространственной структуры в объеме тиксотропной среды.
При стационарном (установившемся во времени) движении тиксотропные и реостабильные жидкости мало отличаются друг от друга.
После остановки течения в объеме неподвижного тиксотропного материала постепенно вновь образуется пространственная структура, что обычно приводит к повышению кажущейся ньютоновской вязкости , а чаще всего, к появлению определенного предела текучести .
2 Реопектические среды. Для реопектических материалов характерно то, что их кажущаяся вязкость (при неизменных условиях деформирования под действием установившегося во времени напряжения сдвига) повышается со временем. Например, при начале течения реопектической среды, до этого покоившейся в трубе, нагрузка насоса в начальный момент времени будет существенно меньше, чем в случае начала движения ранее неподвижной тиксотропной среды. Однако, после начала движения кажущаяся вязкость реопектической жидкости будет постепенно повышаться, что приведет к росту нагрузки насоса и увеличению потребляемой его электроприводом мощности.
В практической работе крайне редко приходится иметь дело с реопектическими жидкостями.
В рамках данной монографии нет возможности подробно обсудить все виды неньютоновских сред, рассматриваемые в реологии, в частности, вязко-упругие материалы. С особенностями поведения других видов неньютоновских сред можно познакомиться по книге [36].