
- •1. Промышленное производство полиэтилена
- •2. Полиэтилен высокого давления (низкой плотности)
- •2.1. Особенности полимеризации этилена в газовой фазе
- •2.2. Производство полиэтилена высокого давления в трубчатом реакторе
- •2.3. Свойства и применение полиэтилена высокого давления
- •3. Полиэтилен низкого давления (высокой плотности)
- •3.1 Особенности полимеризации этилена на комплексных металлорганических катализаторах
- •3.2. Производство полиэтилена низкого давления (высокой плотности) в жидкой фазе
- •3.3. Производство полиэтилена низкого давления (высокой плотности) в газовой фазе
- •4. Полиэтилен среднего давления (высокой плотности)
- •4.1. Особенности получения и свойства полиэтилена среднего давления
- •Свойства конструкционных материалов на основе полиэтилена
- •4.2. Производство полиэтилена среднего давления в жидкой фазе
- •5. Сверхвысокомолекулярный полиэтилен
- •5.1. Особенности получения сверхвысокомолекулярного полиэтилена
- •Влияние строение алюминийорганического соединения на степень восстановления титана и молекулярную массу полиэтилена низкого давления
- •5.2. Свойства сверхвысокомолекулярного полиэтилена
- •Основные структурные характеристики свмпэ и пэнд
- •Основные свойства свмпэ и пэнд
- •6. Линейный полиэтилен высокого давления
- •Технологии производства линейного полиэтилена
2.2. Производство полиэтилена высокого давления в трубчатом реакторе
Промышленные трубчатые реакторы-полимеризаторы представляют собой последовательно соединенные теплообменники типа «труба в трубе». Трубки реактора имеют переменный диаметр (50 – 70 мм). Отдельные звенья «трубчатки» соединяют массивными полыми плитами-калачами. Трубы и калачи снабжены рубашками, последовательно соединенными между собой. В качестве теплоносителя для подогрева этилена и отвода избыточного тепла применяют перегретую воду с температурой 190 – 230 0С, которая поступает в рубашку трубчатого реактора противотоком к этилену и к потоку реакционной массы. Применение высоких температур необходимо для предотвращения образования пленки полимера на стенках труб. Для поддержания постоянного температурного режима в реакторе и обеспечения эффективного теплосъема производится дополнительный ввод этилена и инициатора в различные зоны по длине реактора. Многозонный реактор более производителен, чем однозонный. Однозонный реактор при максимальной температуре реакции (300 0С) обеспечивает 15 – 17 % превращения этилена за один проход. Двухзонный реактор достигает при этой же температуре 21 – 24 % превращения. В трехзонном реакторе степень превращения увеличивается до 26 – 30 %. Производительность четырехзонного аппарата по сравнению с трехзонным увеличивается незначительно.
Для получения постоянных показателей свойств полиэтилена необходимо поддерживать температуру в реакторе по зонам на одном уровне. Производительность реактора зависит от его размеров, поэтому в настоящее время применяются реакторы с различной длиной труб и диаметром. Для реакторов большой мощности длина труб достигает 1000 м и более. Технологический процесс производства полиэтилена высокого давления в трубчатом реакторе состоит из следующих стадий:
смешение свежего этилена с возвратным газом и кислородом,
двухкаскадное сжатия газа,
полимеризация этилена в конденсированной фазе (плотность этилена 400 – 500 кг/м3),
разделение полиэтилена высокого давления и непрореагировавшего этилена, поступающего в рецикл,
грануляция полиэтилена.
Для окрашивания, стабилизации и наполнения в полиэтилен высокого давления вводят соответствующие добавки, после чего его расплавляют и гранулируют.
На рис.1. представлена принципиальная схема получения полиэтилена высокого давления в трубчатом реакторе непрерывным способом [1].
Рис. 1. Схема процесса производства полиэтилена высокого давления в газовой фазе:
1 – коллектор; 2 – смеситель этилена низкого давления; 3 – компрессор первого каскада; 4 – смеситель этилена высокого давления; 5 – компрессор второго каскада; 6 – трубчатый реактор; 7 – отделитель высокого давления; 8 – отделитель низкого давления; 9 – гранулирующий агрегат; 10 – вибросито; 11, 14 – циклонные сепараторы; 12, 15 – холодильники; 13, 16 – фильтры;
17 – компрессор предварительного сжатия
Из цеха газоразделения свежий этилен под давлением 0,8 – 1,1 МПа поступает в коллектор 1 и затем в смеситель 2, в котором смешивается с возвратным этиленом никого давления. Далее в поток вводят кислород и смесь поступает в трехступенчатый компрессор первого каскада 3, где сжимается до 25 МПа. После каждой ступени сжатия этилен охлаждается в холодильниках, отделяется от смазки в сепараторах, а затем поступает в смеситель 4, в котором смешивается с возвратным этиленом высокого давления из отделителя 7. Затем смесь направляется в двухступенчатый компрессор 5 второго каскада, где сжимается до 245 МПа. После первой ступени сжатия этилен охлаждается в холодильнике, очищается от смазки в сепараторах, а после второй ступени при температуре около 70 0С без охлаждения по трем вводам поступает в трубчатый реактор 6 на полимеризацию.
Ректор-полимеризатор состоит из трех зон, перед каждой зоной имеется теплообменник для подогрева газа или реакционной смеси в зависимости от применяемого инициатора до 120 – 190 0С. В конце третьей зоны установлен холодильник, в котором реакционная масса охлаждается до 200 – 250 0С. Полимеризацию этилена в трубчатом реакторе проводят по режиму [2]:
температура, 0С: |
190 – 250 |
давление, МПа: |
245 |
концентрация кислорода, %: |
0,002 – 0,008 |
степень конверсии этилена за цикл, %: |
26 – 30 |
суммарная степень конверсии этилена, %: |
95 – 98 |
Из трубчатого реактора 6 смесь непрореагировавшего мономера с полимером через редукционный вентиль под давлением 24 – 26 МПа поступает в отделитель высокого давления, в котором за счет разности плотности этилена и полиэтилена происходит их разделение. Непрореагировавший этилен из верхней части отделителя высокого давления 7 направляется в циклонные сепараторы 11 и холодильники 12, где от этилена отделяются унесенные частицы полиэтилена. Затем этилен охлаждается, поступает на смешение со свежим газом в смеситель 4 и возвращается в цикл.
Расплавленный полиэтилен из нижней части отделителя высокого давления 7 через дросселирующий вентиль направляется в отделитель низкого давления 8, в котором поддерживается давление 0,15 – 0,6 МПа. Расплав полиэтилена, освобожденный от остатков растворенного этилена при 180 – 190 0С, через загрузочный штуцер направляется в гранулирующий агрегат 9.
Этилен из отделителя низкого давления 8 и после очистки и охлаждения в циклонном сепараторе 14, холодильнике 15 и фильтре 16 поступает в компрессор предварительного сжатия (0,9 – 0,17 МПа) 17, затем в коллектор 1 свежего этилена и возвращается в цикл.
В грануляторы 9 непрерывно подается стабилизирующая смесь (фенил-α-нафтиламин с дифенил-п-фенилендиамином) и другие добавки. Полиэтилен, смешанный со стабилизатором, направляется на грануляцию. Для быстрого охлаждения гранул в гранулирующую головку подаётся обессоленная вода. Охлажденные до 60 – 70 0С гранулы полиэтилена выносятся водой на вибросито 10, на которое после удаления основного количества влаги подается теплый воздух для окончательной сушки. Готовый полиэтилен упаковывают в мешки.
При получении полиэтилена высокого давления в трубчатом реакторе применение кислорода в качестве инициатора обеспечивает приемлемую в данном процессе скорость реакции при температурах реакционной смеси 180 – 200 0С.
Сильноэкзотермический характер процесса приводит к тому, что температура массы по длине реактора повышается, достигая к концу раекции 240 – 250 0С. Максимальные температура и конверсия зависят от концентрации инициатора и давления.
Производство полиэтилена относится к категории пожароопасных и взрывоопасных (категория А). Этилен образует с воздухом взрывчатые смеси, поэтому особо опасно производство полиэтилена высокого давленя, связанное с применением высоких давлений и температур. В связи с возможностью взрывного разложения этилена во время полимеризации реакторы оборудуют специальными предохранительными мембранами и устанавливают в боксах.