
- •Лекция №1. Сущность железобетона. Сущность предварительно напряженного железобетона. Физико-механические свойства бетона: деление бетона по ряду признаков, структура бетона, усадка бетона.
- •1.1. Сущность железобетона.
- •1.2. Сущность предварительно напряженного железобетона.
- •1.3. Физико-механические свойства бетона: деление бетона по ряду признаков, структура бетона, усадка бетона.
- •Лекция №2. Физико-механические свойства бетона: прочность бетона, классы и марки бетона, деформативность бетона, модуль деформаций бетона. Физико-механические свойства арматуры.
- •2.1. Прочность бетона.
- •2.2. Классы и марки бетона.
- •2.3. Деформативность бетона.
- •2.4. Модули деформаций бетона.
- •2.5. Арматура. Ее физико-механические свойства.
- •Лекция №3. Физико-механические свойства железобетона. Три стадии напряженно-деформированного состояния железобетонных элементов.
- •3.1. Физико-механические свойства железобетона
- •3.2. Три стадии напряженно-деформированного состояния железобетонных элементов.
- •Лекция №4. Метод расчета по предельным состояниям. Три категории требований к трещиностойкости железобетонных элементов. Граничная относительная высота сжатой зоны.
- •4.1. Метод расчета по предельным состояниям (мпс).
- •4.2. Граничная относительная высота сжатой зоны.
- •4.3. Три категории требований к трещиностойкости железобетонных конструкций.
- •Лекция №5. Изгибаемые элементы: конструктивные особенности, расчет прочности по нормальным сечениям элементов прямоугольного профиля.
- •5.1. Конструктивные особенности изгибаемых элементов.
- •5.2. Расчет прочности по нормальным сечениям элементов прямоугольного профиля.
- •Лекция №6. Изгибаемые элементы: два типа задач при расчете изгибаемых элементов прямоугольного сечения с двойной арматурой; расчет прочности по нормальным сечениям элементов таврового профиля.
- •6.1. Элементы прямоугольного профиля с двойной арматурой.
- •6.2. Элементы таврового профиля.
- •7.1. Расчет прочности по наклонным сечениям.
- •Значения коэффициентов bi
- •7.2. Сжатые элементы.
- •8.1. Растянутые элементы.
- •8.2. Конструкции плоских перекрытий.
- •Лекция №9. Железобетонные фундаменты. Отдельные фундаменты колонн: конструкции сборных фундаментов; конструкции монолитных фундаментов; расчет центрально нагруженных фундаментов.
- •9.1. Конструкции отдельных сборных фундаментов.
- •9.2. Конструкции монолитных фундаментов.
- •9.4. Расчет центрально нагруженных фундаментов.
- •Литература.
1.2. Сущность предварительно напряженного железобетона.
Иногда образование трещин в конструкциях недопустимо по условиям эксплуатации (например, в резервуарах; трубах; конструкциях, эксплуатирующихся при воздействии агрессивных сред). Чтобы исключить этот недостаток железобетона, применяют предварительно напряженные конструкции. Таким образом, можно избежать появления трещин в бетоне и уменьшить деформации конструкции в стадии эксплуатации.
Предварительно напряженной называют такую железобетонную конструкцию, в процессе изготовления которой создают значительные сжимающие напряжения в бетоне натяжением высокопрочной арматуры. Начальные напряжения создают в тех зонах бетона, которые впоследствии под воздействием нагрузок испытывают растяжение (рис. 1.2).
|
|
а) |
Р |
б) |
|
|
|
Рис. 1.2. К сущности преднапряженного железобетона: а – конструкция в стадии обжатия бетона напрягаемой арматурой; б – в стадии эксплуатации (N – внешняя нагрузка на конструкцию; Р – усилие предварительного обжатия в арматуре). |
|
|
|
|
|
Преимущества преднапряженных железобетонных конструкций:
- повышенная трещиностойкость, и как следствие, повышенная долговечность;
- повышенная жесткость;
- экономический эффект, достигаемый применением высокопрочной арматуры (удельная стоимость арматуры снижается с увеличением прочности арматуры, поэтому высокопрочная арматура значительно выгоднее обычной; однако применять высокопрочную арматуру в конструкциях без преднапряжения не рекомендуется, т.к. при высоких растягивающих напряжениях в арматуре трещины в растянутых зонах бетона будут значительно раскрыты, снижая при этом необходимые эксплуатационные качества конструкции);
- меньший собственный вес по сравнению с обычным железобетоном за счет применения высокопрочных материалов.
Преднапряжение практически не влияет на прочность железобетонных конструкций.
Способы создания предварительного напряжения конструкций:
Натяжение арматуры на упоры.
Натяжение арматуры на бетон.
Самонапряжение конструкций.
Натяжение на упоры – наиболее индустриальный способ создания преднапряжения арматуры. Арматуру заводят в форму до бетонирования элемента, один конец ее закрепляют на упоре, другой натягивают домкратом или иным приспособлением до контролируемого напряжения (рис. 1.3). Затем изделие бетонируется, пропаривается и после приобретения бетоном необходимой кубиковой прочности для восприятия обжатия Rbp арматуру отпускают с упоров. Арматура, стремясь укоротиться в пределах упругих деформаций, при наличии сцепления с бетоном увлекает его за собой и обжимает.
|
|
|
|
|
|
|
|
|
Рис. 1.3. Схема создания предварительного напряжения арматуры на упоры: нк – контролируемое напряжение. |
||
|
||
|
Натяжение на бетон применяется главным образом при соединении на монтаже крупноразмерных конструкций (в мостостроении и др.), а также при возведении специальных сооружений (телебашни, защитные оболочки АЭС и др.), в которых необходимо поддерживать заданное напряжение. Сначала изготавливают бетонный или слабоармированный элемент, затем по достижении бетоном прочности Rbp создают в нем предварительное сжимающее напряжение. Это осуществляется следующим образом: напрягаемую арматуру заводят в каналы или пазы, оставляемые при бетонировании элемента, и натягивают с помощью домкрата, упираясь прямо в торец изделия. При этом обжатие бетона происходит уже в процессе натяжения арматуры. При этом способе напряжения в арматуре контролируют после окончания обжатия бетона. Каналы в бетоне, превышающие диаметр арматуры на 5 15 мм, создают укладкой извлекаемых впоследствии пустотообразователей (стальных спиралей, резиновых трубок и т.д.). Сцепление арматуры с бетоном достигается за счет того, что после обжатия инъецируют (нагнетают в каналы цементное тесто или раствор под давлением через заложенные при изготовлении элемента тройники – отводы). Если напрягаемую арматуру располагают с внешней стороны элемента (кольцевая арматура трубопроводов, резервуаров и т.п.), то навивку ее с одновременным обжатием бетона выполняют специальными навивочными машинами. В этом случае на поверхность элемента после натяжения арматуры наносят торкретированием защитный слой бетона.
|
|
|
|
|
|
Рис. 1.4. Схема создания предварительного напряжения арматуры на бетон. |
|
|
|
|
Самонапряжение конструкций осуществляется при использовании энергии напрягающих или расширяющихся цементов.
Способы создания натяжения арматуры:
Механический (гидравлические домкраты);
Электротермический (нагрев арматуры).
Электротермомеханический (арматуру нагревают и домкратами натягивают);