
- •О десская национальная академия связи им. А.С. Попова Кафедра теории электрической связи им. А.Г. Зюко
- •Теория связи Модуль 3. Теория помехоустойчивости приема сигналов электросвязи
- •Содержание
- •Введение
- •1. Общая характеристика задач приема сигналов
- •Контрольные вопросы
- •2. Критерий оптимальности демодуляторов сигналов цифровой модуляции и правила решения
- •Контрольные вопросы
- •3. Алгоритм оптимальной демодуляции сигналов цифровой модуляции (общий случай)
- •Контрольные вопросы
- •4. Согласованный фильтр
- •Контрольные вопросы
- •5. Применение согласованных фильтров в демодуляторах сигналов аим-м
- •Контрольные вопросы
- •6. Коррелятор
- •Контрольные вопросы
- •7. Согласованный фильтр при небелом шуме
- •Контрольные вопросы
- •8. Согласованная фильтрация радиоимпульсов
- •Контрольные вопросы
- •9. Оптимальные демодуляторы одномерных полосовых сигналов
- •Контрольные вопросы
- •10. Оптимальные демодуляторы двумерных полосовых сигналов
- •Контрольные вопросы
- •11. Вероятность ошибки при оптимальной демодуляции одномерных сигналов цифровой модуляции
- •Контрольные вопросы
- •12. Вероятность ошибки при оптимальной демодуляции двумерных сигналов цифровой модуляции
- •Контрольные вопросы
- •13. Системы восстановления несущего колебания
- •Контрольные вопросы
- •14. Фазоразностная модуляция
- •Контрольные вопросы
- •15. Некогерентная демодуляция сигналов цифровой модуляции
- •Контрольные вопросы
- •16. Системы тактовой синхронизации
- •Контрольные вопросы
- •17. Демодуляция в условиях межсимвольной интерференции
- •Контрольные вопросы
- •18. Неоптимальные демодуляторы
- •Контрольные вопросы
- •19. Демодуляция в каналах с переменными параметрами
- •Контрольные вопросы
- •20. Прием цифровых сигналов в каналах с сосредоточенными по спектру и импульсными помехами
- •Контрольные вопросы
- •21. Количественная мера помехоустойчивости аналоговых систем передачи. Критерий оптимальности демодулятора
- •Контрольные вопросы
- •22. Оптимальная линейная фильтрация непрерывных сигналов
- •Контрольные вопросы
- •23. Сравнение помехоустойчивости оптимальных демодуляторов сигналов аналоговых видов модуляции
- •Контрольные вопросы
- •Рекомендации относительно самостоятельной работы
- •Перечень вопросов к экзамену
- •Перечень знаний и умений, которые должен приобрести студент при изучении модуля 3
- •Литература Основная
- •Дополнительная
- •Иващенко Петр Васильевич
- •Незгазинская Наталья Васильевна
- •Теория связи
- •Модуль 3. Теория помехоустойчивости приема сигналов электросвязи
Контрольные вопросы
1. Запишите и поясните формулы вероятности ошибки двоичного символа сигналов ФМ-4, ФМ-8, КАМ-16. Сравните помехоустойчивость.
2. Объясните, почему с ростом числа позиций сигнала ухудшается помехоустойчивость.
13. Системы восстановления несущего колебания
Система восстановления несущего колебания (ВН) демодуляторов полосовых сигналов цифровой модуляции предназначена для формирования опорного гармонического колебания, фаза которого совпадает с фазой несущей, на основе которой сформирован демодулируемый сигнал.
Уже в 30-е годы прошлого столетия стало ясно, что сигналы ФМ-2 имеют наивысшую помехоустойчивость. Для применения этих сигналов в системах передачи необходимо было решить задачу восстановления несущего (опорного) колебания в демодуляторе, которое необходимое для работы синхронного детектора. В те годы была предложена схема восстановления несущего колебания с умножением частоты на 2 (рис. 13.1).
В случае
ФМ-2
.
Коэффициенты ai
заданы созвездием
сигнала (рис. 11.1). Канальные символы:
(13.1)
Много десятилетий использовались «слабо» фильтрованные импульсы A(t), которые были близки по форме к П-импульсу на интервале длительностью Т
(13.2)
После
умножения частоты на 2, как сигнал s1(t),
так и сигнал s0(t)
дают
.
Узкополосный фильтр имеет среднюю
частоту полосы пропускания 2f0.
Он предназначен для ослабления помех.
Делитель частоты на 2 может выдать одно
из двух возможных опорных колебаний:
случай 1:
случай 2:
Оба колебания возможны, так как результат зависит от того, которые начальные условия сложатся в схеме делителя. Говорят, что опорное колебание имеет неопределенность фазы порядка 180.
В случае 1 реализуется алгоритм оптимальной демодуляции сигнала ФМ-2. В случае 2 на выходе перемножителя, а затем и согласованного фильтра, и дискретизатора будут напряжения, противоположные тем, которые имеют место в случае 1. Схема решения будет выносить инверсные решения: вместо 1 выдает 0 и наоборот. Такое явление получило название инверсная (обратная) робота демодулятора. Оказалось, что и в процессе работы демодулятора могут происходить случайные скачкообразные переходы от колебания uоп1(t) к колебанию uоп2(t) и наоборот.
В демодуляторе сигнала ФМ-4 необходимо использовать умножитель частоты на 4, фильтр со средней частотой полосы пропускания 4f0 и делитель частоты на 4. После делителя частоты возникает одно из опорных колебаний, которые отличаются по фазе с шагом 90. Имеет место неопределенность фазы опорного колебания порядка 90.
Устранить проявление неопределенности фазы опорного колебания в демодуляторе удается при использовании разностного (относительного) кодирования. Такие методы передачи получили название фазоразностной (относительной фазовой) модуляции.
Выше рассмотрена система ВН с возведением в степень. Однако она хорошо работает, когда амплитуда импульса A(t) близка к прямоугольной форме. Ныне используются импульсы Найквиста – импульсы с существенно сглаженной формой A(t). При такой форме импульса система ВН с возведением в степень работает плохо.
Опорное колебание необходимое для работы синхронного детектора (рис. 13.2). Пусть на вход детектора поступает сигнал ФМ-2. Канальный символ описывается
(13.3)
Если фаза колебания от генератора
(13.4)
отличается от фазы несущей входного сигнала на величину , то сигнал на выходе синхронного детектора получает множитель cos:
. (13.5)
Поскольку
максимальное значение косинуса равняется
единице и достигается лишь в случае
= 0, наличие разности фаз приводит к
уменьшению уровня сигнала на выходе
детектора. Если же
= /2,
то сигнал на выходе детектора вообще
отсутствует:
.
Ныне система ВН – это система фазовой автоматической подстройки частоты (ФАПЧ) (рис. 13.3) со специальным детектором ошибки фазы, которая способна работать в условиях отсутствия несущей в спектре сигнала. Здесь ГУН – генератор, управляемый напряжением. При появлении напряжения ошибки фазы , этим напряжением подстраивается частота и фаза колебания, производимого ГУНом, так, чтобы уменьшить величину ошибки фазы.
Рассмотрим
построение детектора ошибки фазы в
случае сигнала ФМ-2. Схема детектора
содержит еще один дополнительный
синхронный детектор, опорным колебанием
которого является
.
Напомним, что работу синхронного
детектора можно рассматривать как
вычисление проекции s(t)
на uоп(t).
Два синхронных детектора отличаются
опорными колебаниями, сдвинутыми по
фазе на 90.
Поэтому получаемые напряжения с выходов
синхронных детекторов являются
квадратурными составляющими детектируемого
сигнала.
На рис. 13.4 показано созвездие демодулируемого сигнала ФМ-2 и вычисленные квадратурные составляющие в момент отсчета при условии, что демодулируется канальный символ с амплитудой а: I – синфазная составляющая, Q – квадратурная составляющая. На рис. 13.4, а ошибка фазы опорного колебания = 0; при этом синхронные детекторы вычисляют I = а, Q = 0. На рис. 13.4, б ошибка фазы опорного колебания > 0; при этом синхронные детекторы вычисляют I = аcos, Q < 0. На рис. 13.4, в ошибка фазы опорного колебания < 0; при этом синхронные детекторы вычисляют I = аcos, Q > 0.
Видим, что знак значения Q соответствует ошибке фазы: а именно, если Q < 0, то > 0 и необходимо уменьшать частоту и фазу ГУН, если же Q > 0, то < 0 и необходимо увеличивать частоту и фазу ГУН. Таким образом, значение Q можно принять в качестве ошибки фазы . Но ситуация со знаком Q противоположная при демодуляции канального символа с амплитудой –а.
Костас предложил в качестве ошибки фазы опорного колебания в демодуляторе сигнала ФМ-2 использовать
. (13.6)
На рис. 13.5 показанная схема демодулятора сигнала ФМ-2 с раскрытой схемой восстановления несущего колебания.
Для построения системы ВН демодулятора сигнала ФМ-4 используется детектор ошибки фазы, вычисляемой по алгоритму Костаса
. (13.7)
Здесь признаком ошибки фазы опорного колебания есть неравенство модулей квадратурных составляющих I и Q. Такой же алгоритм вычисления ошибки фазы используется и в демодуляторах сигналов КАМ-М.