Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
tsa (часть2).doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
3.72 Mб
Скачать

6.5. Регулирующие органы. Классификация и области применения

В соответствии с принципом блочно-модульного построения разработана унифицированная система исполнительных устройств ГСП (СИУ ГСП), объединяющая все виды общепромышленных исполнительных устройств больших, средних и малых расходов, состоящих из различных исполнительных механизмов и регулирующих органов. Система СИУ ГСП предусматривает повышение технического уровня ИУ и их надежности, взаимозаменяемость исполнительных устройств, исполнительных механизмов и регулирующих органов, высокую степень унификации ИУ, возможность их работы со средами, имеющими температуру от –180 до +600°С и давление до 8 кН, а также с широкой гаммой химически агрессивных, токсичных и других сред. Все исполнительные устройства СИУ ГСП могут комплектоваться позиционерами и другими дополнительными блоками.

Регулирующие органы служат для изменения количества вещества, подводимого к объекту регулирования или отводимого от него. Они представляют собой различного рода клапаны, заслонки или шиберы, приводимые в движение приводами. Чаще всего с помощью регулирующих органов изменяют расход вещества, подаваемого в объект регулирования. Изменение расхода среды при перемещении регулирующего органа из одного крайнего положения в другое называют диапазоном регулирования органа. Для обеспечения регулирующим органом управления процессом необходимо, чтобы диапазон регулирования его превышал те изменения расхода среды, которые могут иметь место при переходе от минимальной нагрузки к максимальной.

Действие регулирующего органа в пределах диапазона регулирования оценивается его статической характеристикой, т. е. зависимостью расхода среды от положения (степени открытия) регулирующего органа [20].

Различают теоретическую и рабочую статические характеристики. Теоретическая характеристика определяется при постоянном перепаде давления на регулирующем органе, а рабочая – при переменном перепаде, т. е. для реальных рабочих условий. Рабочая характеристика может отличаться от теоретической. Если последняя линейна, то рабочая характеристика может быть существенно нелинейной. Поэтому для получения линейной рабочей характеристики необходимо выбрать профиль регулирующего органа так, чтобы теоретическая характеристика была нелинейной. Регулирующие органы обычно выполняются с линейной, параболической или логарифмической теоретическими характеристиками.

Чаще других в качестве регулирующих органов используют клапаны (рис. 6.62, а). Регулирование расхода среды через клапан осуществляется за счет изменения проходного сечения между плунжером 1 и седлом 5. Поверхность, по которой соприкасаются плунжер и седло в закрытом положении, называют опорной поверхностью. Шток 4, перемещающийся под действием привода, выведен из корпуса 2 наружу через сальник 3.

Статическая характеристика клапанного регулирующего органа определяется формой и размерами плунжера и седла, которые могут быть различными (рис. 6.62, бж).

На рис. 6.62, б показан тарельчатый клапан с плоской опорной поверхностью. Проходное сечение его – цилиндрическая поверхность. Такие клапаны применяют, редко, так как при больших скоростях протекания среды через них кромки тарелок быстро истираются, что приводит к изменению характеристик клапанов.

Тарельчатые клапаны с конической опорной поверхностью (рис. 6.62, в) используют для регулирования больших расходов. Проходным сечением у них служит кольцевая щель между внутренней кромкой плунжера и опорной поверхностью седла.

а б в

г д е ж

Рис. 6.62. Типы регулирующих клапанов

Игольчатые клапаны (рис. 6.62, г) применяют для сравнительно малых расходов среды и при значительных давлениях. Проходным сечением игольчатых клапанов служит коническая щель между внутренней кромкой седла и конической поверхностью плунжера.

Золотниковый клапан (рис. 6.62, д, е, ж) представляет собой полый цилиндр с прорезанными в его боковой стенке окнами. Величина проходного сечения клапана определяется суммарной площадью той части окон, которая выступает над кромкой седла. Окна могут быть прямоугольного (рис. 6.62, д), треугольного (рис. 6.62, е) или другого по форме (рис. 6.62, ж) сечения.

На рис. 6.63 представлены некоторые конструкции регулирующих органов. Они выполняются как односедельными, так и двухседельными.

а б в

г д е

ж

Рис. 6.63. Конструкции регулирующих клапанов

Односедельные регулирующие органы (рис. 6.63, а) применяют для установки на трубопроводах малого диаметра и при небольших перепадах давлений на клапанах. Обычно регулирующие органы исполнительных механизмов выполняют двухседельными прямого (рис. 6.63, б, в) или обратного (рис. 6.63, г) действия. У регулирующих органов прямого действия при ходе штока вниз проходное сечение уменьшается, а у регулирующих органов обратного действия – увеличивается. Двухседельные клапаны позволяют значительно уменьшить усилие, оказываемое на шток регулирующего органа.

Кроме указанных регулирующих органов для регулирования расхода загрязненных и агрессивных сред применяют диафрагмовые (рис. 6.63, д) и шланговые (рис. 6.63, е) клапаны. В диафрагмовых клапанах проходное сечение перекрывается диафрагмой из специального материала, а в шланговых – сечение потока изменяется за счет деформации шланга, изготовленного из специального материала, стойкого к регулируемой среде.

В промышленности последнее время получают распространение трехходовые смесительные клапаны (рис. 6.63, ж). Преимущество их заключается в том, что при постоянном давлении потоков можно без применения специальных регуляторов соотношения поддерживать соотношение расходов двух смешиваемых потоков.

В системах регулирования при воздействии на потоки газа и пара находят применение также регулирующие заслонки. Они используются в трубопроводах большого диаметра при небольших избыточных давлениях, где допускаются небольшие потери давления. Заслонки могут работать в среде газов, содержащих твердые частицы, а также в среде сыпучих гранулированных твердых материалов. Изменение проходного сечения регулирующего органа достигается поворотом заслонки под действием пневмопривода.

На рис. 6.64 показаны некоторые типы заслонок. Круглые заслонки (рис. 6.64, а) устанавливают в трубопроводах, а прямоугольные (рис. 6.64, б) – в коробах и газоходах. Заслонки прямоугольного сечения могут выполняться однолопастными (рис. 6.64, б), многолопастными с разделительными перегородками (рис. 6.64, в) и многолопастными без разделительных перегородок (жалюзи) (рис. 6.64, г). Применение многолопастных заслонок позволяет значительно уменьшить требуемое для управления, заслонкой усилие пневмопривода.

а б

в

Рис. 6.64. Типы поворотных заслонок

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]