
- •Часть 2
- •Глава 4. Логические элементы и устройства систем автоматики 7
- •Глава 5. Вычислительные средства обработки информации в системах автоматики 63
- •Глава 6. Исполнительные устройства и регулирующие органы систем автоматики 158
- •Глава 4. Логические элементы и устройства систем автоматики
- •4.1. Логические элементы
- •4.2. Функциональные узлы комбинационного типа
- •4.2.1. Шифраторы и дешифраторы
- •4.2.2. Мультиплексоры
- •4.2.3. Сумматоры
- •4.2.4. Цифровые компараторы
- •4.3. Функциональные узлы последовательностного типа
- •4.3.1. Асинхронные триггеры
- •4.3.2. Синхронные триггеры
- •4.3.3. Регистры параллельного действия
- •4.3.4. Регистры последовательного действия.
- •4.3.5. Счетчики
- •4.4. Схемотехника запоминающих устройств
- •4.4.1. Запоминающие устройства эвм
- •4.4.2. Запоминающие элементы статических озу
- •4.4.3. Оперативные запоминающие устройства динамического типа
- •4.4.4. Постоянные запоминающие устройства
- •4.4.5. Перепрограммируемые пзу, Flash-память
- •4.4.6. Построение модуля озу заданной емкости
- •4.5. Цифро-аналоговые и аналого-цифровые преобразователи
- •4.5.1. Цифро-аналоговые преобразователи
- •4.5.2. Аналого-цифровые преобразователи параллельного кодирования
- •4.5.3. Аналого-цифровые преобразователи последовательного кодирования
- •4.6. Программируемые логические матрицы и интегральные схемы
- •Глава 5. Вычислительные средства обработки информации в системах автоматики
- •5.1. Микропроцессоры в системах автоматизации текстильного производства
- •5.1.1. Архитектура микропроцессорных устройств
- •5.1.2. Классификация микропроцессоров
- •5.1.3. Взаимодействие микропроцессора с внешними устройствами
- •5.1.4. Структура типового микропроцессорного комплекта
- •5.1.5. Однокристальные микроконтроллеры
- •5.1.6. Программируемые логические контроллеры
- •5.2. Вычислительные машины и вычислительные системы асу тп текстильных производств
- •5.2.1. Эвм общего назначения
- •5.2.2. Специализированные эвм и вычислительные комплексы
- •5.2.3. Рабочие станции
- •5.3. Сетевые компоненты систем автоматики
- •5.3.1. Локальные управляющие вычислительные сети
- •5.3.2. Топологии локальных сетей
- •5.3.3. Сетевые среды
- •5.4. Промышленные интерфейсы и протоколы
- •5.4.1. Интерфейс стандарта rs-232
- •5.4.2. Интерфейсы стандартов eia rs‑422a/rs-485
- •5.4.3. Интерфейс и протокол can
- •5.4.4. Шина usb
- •5.4.5. Протокол profibus
- •5.4.6. Протокол modbus
- •5.5. Программные средства автоматизации
- •5.5.1. Структура программного обеспечения
- •5.5.2. Системное программное обеспечение
- •5.5.3. Прикладное программное обеспечение
- •5.5.4. Инструментальные средства разработки, отладки и сопровождения программного обеспечения
- •5.5.5. Системы scаda
- •Глава 6. Исполнительные устройства и регулирующие органы систем автоматики
- •6.1. Электрические исполнительные механизмы
- •6.1.1. Электромагнитные исполнительные элементы
- •6.1.2. Электродвигательные исполнительные устройства
- •6.1.3. Двигатель постоянного тока как элемент исполнительных механизмов
- •6.1.4. Двухфазный асинхронный двигатель как элемент исполнительных механизмов
- •6.1.5. Трехфазный асинхронный двигатель как элемент исполнительных механизмов
- •6.1.6. Синхронный двигатель как элемент исполнительных механизмов
- •6.2. Автоматизированный электропривод
- •6.2.1. Асинхронные электроприводы со скалярным управлением
- •6.2.2. Асинхронные электроприводы с векторным управлением
- •6.2.3. Вентильные и бесконтактные машины постоянного тока
- •6.3. Силовые полупроводниковые преобразователи в системе автоматизированного электропривода
- •6.3.1. Управляемые выпрямители
- •6.3.2. Широтно-импульсные преобразователи
- •6.3.3. Автономные инверторы
- •6.3.4. Непосредственные преобразователи частоты
- •6.4. Пневматические исполнительные механизмы
- •6.5. Регулирующие органы. Классификация и области применения
- •Список литературы
5.3.3. Сетевые среды
Среда ArcNet (Attached resource computer Network) была разработана Datapoint Corporation в 1977 г. Первые платы ArcNet были выпущены в 1983 г. Это простая, гибкая, недорогая сетевая архитектура для сетей масштаба группы. Организует логическое кольцо, используя общую шину. По логическому кольцу передается маркер. Устройство, получившее маркер, имеет право на передачу порции данных в канал. Стандартный кадр ArcNet может содержать до 508 Байт данных. В ArcNet Plus эта величина увеличена до 4096 Байт. Принимает данные то устройство, чей адрес указан в блоке данных. Каждому подключенному устройству присваивается номер. Последовательность обхода маркера определяется номерами устройств. Первые сети ArcNet использовали скорость передачи 2,5 Мбит/с. Скорость передачи ArcNet Plus доведена до 20 Мбит/с. Внешне может выглядеть как звезда и как общая шина. В первом случае общая шина реализуется внутри концентратора [17].
Технология Token Ring (маркерное кольцо) основана на передаче маркера по физическому кольцу. Она была запатентована в 1981 г. Устройство, владеющее маркером, имеет право передать кадр. Передаваемый кадр добавляется (цепляется) к маркеру. В более поздних версиях к маркеру могут подцепить свои кадры несколько станций. Величина кадра практически не ограничена. В кадре указываются адреса передатчика и приемника. Кадр принимает то устройство, которому он адресован. После принятия кадра устройство делает в нем пометку о приеме и отправляет с маркером дальше по кольцу. Передатчик, получив свой кадр, удаляет его из кольца. Внешне Token Ring может выглядеть как кольцо или как звезда. В последнем случае кольцо должно быть реализовано внутри концентратора. Достоинством технологии Token Ring является большая устойчивость к высоким нагрузкам на канал, относительно стабильное время доступа к каналу. Недостатком является повышенная сложность и стоимость. Технология FDDI является развитием Token Ring применительно к оптоволоконному кольцу.
Технология Ethernet основана на методе доступа CSMA/CD (carrier sense multiple access with collision detection) – множественный доступ с контролем несущей и обнаружением конфликтов. Ее прообразом явилась технология пакетной радиосети ALOHA. Первые сети Ethernet были выпущены фирмой Xerox в 1975г. Сеть Ethernet использует магистральный высокоскоростной моноканал, организованный в виде общей шины. Каждая станция, имеющая данные для передачи, отслеживает состояние канала (прослушивает канал). Если канал свободен, станция передает кадр в канал. Если одновременно две станции начали передачу кадра в канал, происходит столкновение передач (конфликт, коллизия). В этом случае на каждой станции случайным образом разыгрывается интервал времени, через который она может начать передачу. С большой вероятностью этот интервал времени будет разным у всех конфликтующих станций. Поэтому одна из них начнет передачу первой. Внешне Ethernet может выглядеть как общая шина или звезда. В последнем случае общая шина реализуется внутри концентратора. Обычная скорость передачи 10 и 100 Мбит/c. Основные достоинства Ethernet связаны с благоприятным соотношением параметров цена/производительность. Основной недостаток заключается в резком увеличении времени доступа к каналу и снижении производительности канала при превышении 50% рубежа загрузки.
В сети любой конфигурации имеются сетевые адаптеры – физические устройства доступа. В настоящее время в сетях Ethernet наиболее распространены адаптеры, обеспечивающие скорость 100 Мбит/с. Этой скорости достаточно даже для трансляции потокового видео. В ближайшем будущем стандартом станет скорость 1 Гбит/с и более.
Коаксиальные локальные сети уступают место витым парам и оптоволокну вследствие непрактичности (высокая вероятность отказа соединителей и просто высокая стоимость).