Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка по линейной алгебре Бондаренко .doc
Скачиваний:
3
Добавлен:
01.04.2025
Размер:
1.94 Mб
Скачать
  1. Линейная зависимость векторов

Пусть Xлинейное пространство над полем K.

Определение 2. Вектор b из линейного пространства X называется линейной комбинацией векторов из X, если существуют такие числа из поля K, что

. (1)

При этом также говорят, что вектор b линейно выражается через векторы .

Определение 3. Линейной оболочкой, натянутой на некоторое множество векторов пространства X, называется множество всевозможных линейных комбинаций векторов из P: = .

Линейная оболочка образует линейное пространство.

Чтобы найти линейное выражение вектора через векторы из , следует записать векторное равенство (1) и от него перейти к покоординатным равенствам в силу того, что два вектора равны тогда и только тогда, когда равны их соответствующие координаты. В результате получится система n линейных уравнений относительно . Решив систему и подставив решение в равенство (1), найдем линейное выражение вектора b через .

Поясним описанное правило на примере.

Задача 3. Найти линейное выражение вектора через векторы и .

Решение.

Составим векторное равенство (1):

, то есть

.

Два вектора пространства равны тогда и только тогда, когда равны их соответствующие координаты. Перейдя к покоординатным равенствам, получим систему линейных уравнений:

Решением системы являются числа , . Поэтому .

Задача 4. Найти все значение параметра , при которых вектор линейно выражается через векторы и .

Решение.

Запишем равенство (1) для данного примера:

.

Переходя к покоординатным равенствам, получим систему:

Решение системы: , существует и единственно при любых . Следовательно, при любом действительном вектор b линейно выражается через заданную систему векторов.

Определение 4. Система векторов из линейного пространства X называется линейно зависимой, если хотя бы один из них является линейной комбинацией остальных векторов системы.

Данное определение эквивалентно следующему: система векторов из линейного пространства X называется линейно зависимой, если существуют числа , не равные нулю одновременно, такие, что имеет место равенство:

. (2)

Векторы , не являющиеся линейно зависимыми, называются линейно независимыми, т.е. система векторов линейно независима, если равенство (2) возможно лишь в случае .

Для того чтобы выяснить вопрос о линейной зависимости векторов пространства , следует рассмотреть равенство (2) и перейти от него к покоординатным равенствам. В результате получится система n линейных однородных уравнений относительно . Если полученная система имеет только лишь нулевое решение: , то система векторов линейно независима. В противном случае (т.е. если система имеет и ненулевые решения) система векторов линейно зависима.

Задача 5. Выяснить вопрос о линейной зависимости векторов , , .

Решение.

Составим векторное равенство:

.

Переходя к покоординатным равенствам, получаем систему:

Решая систему методом Гаусса, находим, что она имеет ненулевое решение: , , . Поэтому приведенная система векторов является линейно зависимой, причем .

Отметим, что однородная система n уравнений с n переменными: имеет ненулевое решение, если определитель матрицы A равен нулю, т.е. detA=|A|=0. В противном случае, система имеет только тривиальное (нулевое) решение. Таким образом, вопрос о линейной зависимости векторов в пространстве сводится к вычислению определителя матрицы системы. В задаче 5: det A =0. Следовательно, исходная система векторов линейно зависима.

Задача 6. Докажите, что в пространстве многочлены разной степени линейно независимы.

Решение.

Рассмотрим ненулевые многочлены разной степени из пространства : . Докажем, что из равенства следует, что .

Предположим противное: существует .

Тогда . (3)

Так как степени всех многочленов по условию различны, то степень многочлена , стоящего в правой части равенства (3), равна максимальной из степеней многочленов , для которых (такой j существует, так как ), и не совпадает со степенью многочлена , находящегося в левой части равенства, то есть равенство (3) невозможно. Таким образом, получили противоречие, доказав линейную независимость многочленов разной степени.

Задача 7. Проверить линейную независимость матриц

, , ,

в пространстве .

Решение.

Составим линейную комбинацию матриц: , то есть:

=

.

Переходя к покоординатным равенствам, получаем систему:

, т.е. исходная система матриц линейно независима.