
- •Основы проектирования химических производств
- •Предисловие
- •Экологическое и технико-экономическое обоснование проектов химических производств.
- •Общественная экологическая экспертиза
- •Государственная экологическая экспертиза
- •Общественная экологическая экспертиза
- •Государственная экологическая экспертиза
- •Этапы проведения экологической экспертизы
- •Принципы экологической экспертизы
- •Основные этапы и организация проектирования химических производств
- •1.1. Перспективный план и технико-экономическое обоснование
- •1.2. Задание на проектирование
- •1.3. Выбор района размещения предприятия и площадки строительства
- •1.4. Основные принципы проектирования зданий и сооружений химической промышленности
- •1.5. Разработка проектной документации по охране окружающей среды
- •1.5.2. Разработка прогноза загрязнения воздуха
- •1.5.3. Прогнозирование состояния поверхностных и подземных вод
- •1.5.4. Прогноз воздействия объекта при возможных авариях
- •1.6. Технологический процесс как основа промышленного проектирования
- •1.7. Генеральный план химических предприятий
- •1.8. Типы промышленных зданий
- •1.8.1. Одноэтажные промышленные здания
- •1.8.2. Многоэтажные здания
- •1.8.3. Вспомогательные здания и помещения химических предприятий
- •1.8.4. Склады промышленных предприятий
- •1.9. Инженерные сооружения
- •Инженерных сооружений
- •1.10. Специальные вопросы проектирования химических предприятий
- •Состав исходных данных и основные стадии проектирования оборудования и предприятий химической промышленности
- •2.1. Основные стадии проектирования химических производств и оборудования
- •2.2. Виды конструкторских документов
- •2.3. Содержание разделов исходных данных для проектирования промышленного химического производства
- •Раздел 1. Общие сведения и технология
- •Раздел 2. Характеристика выполненных научно-исследователь-ских работ и опытных работ, положенных в основу исходных данных для проектирования
- •Раздел 3. Технико-экономическое обоснование рекомендуемого метода производства. Перспективы производства и потребления
- •Раздел 4. Патентный формуляр
- •Раздел 5. Техническая характеристика исходного сырья, вспомогательных материалов, основных и конечных продуктов. Целевое назначение и области применения основных продуктов
- •Раздел 6. Физико-химические константы и свойства исходных, промежуточных и конечных продуктов
- •Раздел 7. Химизм, физико-химические основы и принципиальная технологическая схема производства
- •Раздел 8. Рабочие и технологические параметры производства
- •Раздел 9. Материальный баланс производства
- •Раздел 10. Технологическая характеристика побочных продуктов и реализуемых отходов производства
- •Раздел 11. Математическое описание технологических процессов и аппаратов
- •Раздел 12. Данные для расчета, конструирования и выбора основного промышленного технологического оборудования и защиты строительных конструкций
- •Раздел 13. Рекомендации для проектирования автоматизации производства
- •Раздел 14. Аналитический контроль производства
- •Раздел 15. Методы и технологические параметры очистки химически и механически загрязненных сточных вод, обезвреживания газовых выбросов и ликвидации вредных отходов
- •Раздел 16. Мероприятия по технике безопасности, промсанитарии и противопожарной профилактике
- •Раздел 17. Указатель отчетов и рекомендуемой литературы по рассматриваемой технологии производства
- •2.4. Проектирование в системе подготовки инженера-химика
- •2.4.1. Курсовое проектирование
- •2.4.2. Дипломное проектирование
- •2.4.3. Пример использования АвтоЛиспа
- •Системы автоматизированного проектирования
- •3.1. История развития сапр
- •3.2. Основные принципы создания сапр
- •3.4. Автоматическое изготовление чертежей
- •3.5. Основные преимущества автоматизации проектирования
- •3.6. Основные требования к сапр
- •3.7. Связь сапр с производством, расширение области применения
- •3.8. Система автоматизированного проектирования цементных заводов
- •3.8.1. Функционирование сапр
- •3.8.2. Основные пакеты прикладных программ (ппп) технологической подсистемы сапрцемент
- •Введение в проектирование
- •4.1. Проектно-сметная документация
- •4.2.1. Исходные положения
- •4.2.2. Обоснование способа производства химической продукции
- •4.2.3. Экономика строительства предприятия и производства продукции
- •Выбор и разработка технологической схемы производства
- •5.1. Общие положения
- •5.2. Последовательность разработки технологической схемы
- •5.3. Принципиальная технологическая схема
- •5.4. Размещение технологического оборудования
- •Выбор технологического оборудования химических производств
- •6.1. Основные типы химических реакторов
- •6.2. Химические факторы, влияющие на выбор реактора
- •6.2.1. Реакции расщепления
- •6.2.2. Реакции полимеризации
- •6.2.3. Параллельные реакции
- •6.2.4. Комбинация реактора смешения с реактором вытеснения
- •6.3. Эскизная конструктивная разработка основной химической аппаратуры
- •6.3.1. Общие положения
- •6.3.2. Реакторы
- •6.4. Оптимизация процессов химической технологии
- •Уравнения материального баланса технологического процесса
- •7.1. Стехиометрические расчеты
- •7.2. Термодинамический анализ процессов
- •7.2.1. Равновесие химической реакции
- •7.2.2. Расчет состава равновесной смеси
- •7.3. Общее уравнение баланса массы
- •7.4. Практический материальный баланс
- •7.5. Физико-химические основы технологического процесса
- •8. Технологический расчет основной и вспомогательной аппаратуры
- •8.1. Общие положения
- •8.2. Расчет объемов реакторов
- •8.2.1. Основные положения химической кинетики
- •8.2.2. Расчет идеальных реакторов
- •8.3. Определение объемов аппарата
- •Тепловой расчет основного оборудования
- •9.1. Общее уравнение баланса энергии
- •9.2. Практический тепловой баланс
- •9.3. Теплообмен в реакторах
- •9.4. Расчет энтальпий и теплоемкостей
- •9.6. Расчет реактора периодического действия
- •9.7. Степень термодинамического совершенства технологических процессов
- •Гидравлические расчеты
- •10.1. Расчет диаметра трубопровода
- •10.2. Расчет гидравлических сопротивлений в трубопроводе
- •10.3. Гидравлическое сопротивление кожухотрубчатых теплообменников
- •10.4. Подбор насосов
- •Механический расчет
- •11.1. Расчет сварных химических аппаратов
- •11.1.1. Основные расчетные параметры
- •11.1.2. Расчет на механическую прочность
- •11.1.3. Требования к конструированию
- •11.1.4. Расчет цилиндрических обечаек
- •11.1.5. Расчет крышек и днищ
- •11.1.6. Подбор стандартных элементов
- •11.2. Расчет толстостенных аппаратов
- •КонструКционНые материалы в химическом машиностроении
- •12.1. Виды конструкционных материалов
- •12.2. Коррозия металлов и сплавов
- •12.2.1. Виды коррозии
- •12.2.2. Виды коррозионных разрушений
- •12.2.3. Способы борьбы с коррозией
- •12.3. Влияние материала на конструкцию аппарата и способ его изготовления
- •12.3.1. Конструкционные особенности аппаратов из высоколегированных сталей
- •12.3.2. Конструктивные особенности эмалированных аппаратов
- •12.3.3. Конструктивные особенности аппаратов из цветных металлов
- •12.3.4. Конструктивные особенности аппаратов из пластмасс
- •Оформление отдельных элементов химической аппаратуры
- •13.1. Оформление поверхности теплообмена
- •13.2. Перемешивающие устройства
- •13.3. Уплотнения вращающихся деталей
- •Трубопроводы и трубопроводная арматура
- •Вспомогательное оборудование химических заводов
- •15.1. Виды вспомогательного оборудования
- •15.2. Транспортные средства
- •15.2.1. Классификация транспортных средств для твердых материалов
- •15.2.2. Машины для транспортировки жидкостей и газов
- •Технологические схемы и оборудование для гранулирования дисперсных материалов
- •16.1. Классификация методов гранулирования и особенности уплотнения гранул
- •16.2. Теоретические основы и аппаратурное оформление гранулирования методом окатывания
- •16.3. Основные закономерности и аппаратурное оформление метода экструзии
- •16. 4. Закономерности уплотнения материала и аппаратурное оформление метода Прессования
- •16.5. Гранулирование в псевдоожиженном слое
- •16.6. Технологические схемы процессов гранулирования дисперсных материалов
- •Литература
- •Оглавление
1.8. Типы промышленных зданий
1.8.1. Одноэтажные промышленные здания
В химической промышленности одноэтажные промышленные здания сооружают главным образом для производства с горизонтальным технологическим процессом: синтетических и искусственных волокон, шин и резино-технических изделий, пластических масс, цехи электролиза в хлорном производстве, ремонтно-механические цехи, складские помещения (рис. 1.13).
В административно-общественном центре обычно размещают заводоуправления, здания проектных и научно-исследовательских организаций, общежития, медицинские и культурно-массовые учреждения. Состав размещаемых в таком центре объектов определяют с учетом специфики предприятий и соседних производств, размеров территории и радиусов обслуживания.
Во всех случаях, где это возможно, следует блокировать и кооперировать службы административно-хозяйственного назначения различных производств, что позволяет уменьшить территорию административно-обществен-ного центра, эффективно организовать систему обслуживания работающих.
В одноэтажных многопролетных зданиях легче решать вопросы блокировки основных и вспомогательных цехов, внутрицехового транспорта, бытового обслуживания работающих. Компонуют одноэтажные здания из параллельно расположенных одинаковых пролетов.
|
Рис. 1.13. Одноэтажное здание павильонного типа: а – основной производственный объем; б – подсобно-вспомогательные помещения; в – открыто установленное оборудование |
В зданиях пролетного типа шаг колонн равен или кратен 6 м, а величина пролетов кратна 6 м. Для зданий без мостовых кранов применяются пролеты 6, 9, 12, 18 и 24 м, а для зданий оборудованных кранами 18, 24, 30 м и более. Высоты помещений от отметки чистого пола до низа несущих конструкций перекрытия в зданиях без мостовых кранов для пролетов 12 м назначают равными 3,6; 4,2; 4,8; 5,4 и 6 м, а для зданий с пролетами 18 и 24 м 5,4; 6; 7,2; 8,4;10,8 и 12,6 м.
|
Рис. 1.14. Многоэтажное производственное здание: а – без подкрановых балок; б – с одной подкрановой балкой; в – с двумя подкрановыми балками |
В зданиях с мостовыми кранами (рис. 1.14), независимо от их грузоподъемности для разных пролетов, высоту помещений принимают равной от 8,4 до 18 м. Для размещения отдельных производств химии требуются однопролетные здания высотой до 30 м. Конструктивные схемы одноэтажных зданий химической промышленности могут быть сложными из-за разных высот помещений и блокировки одноэтажных секций с многоэтажными.
Одноэтажные здания могут иметь боковое естественное освещение, через фонари (верхнее) и с помощью искусственных источников света, в зависимости от требований можно сочетать боковой свет с верхним, а также с искусственным. Межферменное пространство используют как технический этаж для размещения крупногабаритных воздуховодов, промышленных разводок, электропроводки и других вспомогательных устройств.
1.8.2. Многоэтажные здания
Многие химические производства с вертикальным процессом можно разместить только в многоэтажных зданиях. К таким производствам относят отделения нейтрализации и расфасовки производства аммиачной селитры, производства органического синтеза, цехи заводов химических волокон, производства пластических масс, органических растворителей, красителей и кислот (рис. 1.14).
|
Рис. 1.15. Многоэтажное производственное здание: а – основной производственный объем; б – подсобно-вспомогательные помещения; в – открыто установленное оборудование |
|
Рис. 1.16. Поперечные разрезы зданий I и II очередей сернокислотного производства: А промывочное отделение; Б сушильно-абсорбционное отделение; В контактно-компрессорное отделение; Г склад серной кислоты: I в помещении; II с открытым расположением оборудования |
Для многоэтажных зданий в зависимости от нагрузки перекрытия рекомендуется применять сетки колонн 96 м при нагрузке до 1000 кг/м2, а также сетки 66 при нагрузке 2500 кг/м2. Высоту этажей многоэтажных зданий принимают от отметки чистого пола до отметки чистого пола следующего этажа, равной 3,6; 4,8; 6,0; 7,2 и 10,8 м (рис. 1.15).Многоэтажные здания химической промышленности подразделяют на две группы: бескрановые и с мостовыми или подвесными кранами в верхних этажах с пролетами 18 и 24 м. Для предприятий химической промышленности ширину многоэтажных зданий целесообразно принимать не менее 18 м. Ширина здания для взрывоопасных производств не должна превышать 30 м при двустороннем остеклении и 18 м при одностороннем.
Для встроенных этажерок применяют сборные железобетонные и реже – стальные конструкции.
Установка оборудования на открытых площадках. Открытое размещение оборудования успешно применяют на предприятиях химической, нефтеперерабатывающей, цементной, энергетической и других отраслей промышленности. Расположение оборудования вне здания улучшает санитарно-гигиенические условия труда, повышает уровень безопасности взрывоопасных производств и резко сокращает объем строительных работ.
Они сводятся к возведению фундаментов под оборудование, устройству навесов над ним, сооружению дорог и эстакад.
При открытом размещении оборудование можно устанавливать на железобетонных или стальных этажерках, либо на собственных фундаментах или постаментах. Расположение оборудования вне зданий создает предпосылки для его укрупнения.
Особенно важно размещать оборудование на открытых площадках для тех производств, где применяют сжиженные горючие газы, образующие взрывоопасные смеси с воздухом. При открытых этажерках следует устраивать мостики, переходы, лестницы для свободного доступа к оборудованию. Необходимо отметить повышенную пожароопасность наружных установок, что объясняется отсутствием локализующих очаг пожара ограждающих конструкций. Поэтому вопросы пожарной безопасности приобретают особую важность.
Технико-экономический анализ показателей ряда запроектированных и построенных в последнее время предприятий показал, что сметная стоимость в зависимости от количества выносимого на открытые площадки оборудования может быть снижена на 58 %, а стоимость строительной части почти в 2 раза.
На примере сернокислотного производства показаны варианты размещения оборудования в помещении и на открытых площадках (рис. 1.16).