
- •Общая характеристика Maple
- •Лабораторная работа №1 Тема «Арифметические операции и стандартные функции Maple». Структура Maple
- •Арифметические операции. Целые и рациональные числа, константы в Maple
- •Синтаксис команд. Стандартные функции.
- •Индивидуальные задания:
- •Лабораторная работа №2. Тема «Преобразования математических выражений»
- •Индивидуальные задания:
- •Лабораторная работа №3. Тема «Способы задания функций. Операции оценивания» Способы задания функций
- •Операции оценивания
- •Индивидуальные задания:
- •Лабораторная работа №4. Тема «Решение уравнений»
- •Индивидуальные задания:
- •Лабораторная работа №5. Тема «Построение двухмерных и трехмерных графиков» Двумерные графики
- •Трехмерные графики. Анимация
- •Индивидуальные задания:
- •Лабораторная работа №6. Тема «Вычисление пределов. Дифференцирование». Вычисление пределов
- •Дифференцирование
- •Индивидуальные задания:
- •Лабораторная работа №7. Тема «Исследование функции».
- •Индивидуальные задания:
- •Лабораторная работа №8. Тема «Интегрирование».
- •Индивидуальные задания:
- •Лабораторная работа №9. Тема «Векторная алгебра. Действия с матрицами». Векторная алгебра
- •Действия с матрицами
- •Индивидуальные задания:
- •Лабораторная работа №10. Тема «Спектральный анализ матрицы. Системы линейных уравнений. Матричные уравнения». Спектральный анализ матрицы
- •Системы линейных уравнений. Матричные уравнения
- •Индивидуальные задания:
- •Лабораторная работа №11. Тема «Дифференциальные уравнения». Аналитическое решение дифференциальных уравнений
- •Численное решение дифференциальных уравнений
- •Индивидуальные задания:
- •Интегральное исчисление функций многих переменных
- •Векторный анализ
- •Индивидуальные задания:
- •Лабораторная работа №13. Тема «Ряды и произведения. Интегральные преобразования». Ряды и произведения
- •Интегральные преобразования
- •Индивидуальные задания:
- •Заключение.
- •Литература
- •Приложение
- •Процедуры и функции для работы с числами с плавающей точкой
- •Процедуры и функции для работы с целыми числами
- •Именованные константы Maple
- •Параметры процедуры plot()
- •Параметры процедуры plot3d()
- •Некоторые параметры процедуры convert ()
Процедуры и функции для работы с числами с плавающей точкой
Функция |
Описание |
CopySign(x, у) |
Для действительных аргументов функция возвращает в качестве результата число, равное по модулю х, но имеющее знак у. Если первый аргумент комплексный, то в качестве результата возвращается х, умноженный на у. Для комплексного у возвращается значение undefined (undefined — значит неопределенный). В результате выполнения функции сами аргументы (х и у) не меняются |
DefaultO() |
Функция возвращает значение нуля, используемое по умолчанию (нуль с плавающей точкой имеет знак). Это значение определяется-настройкой переменной окружения rounding |
MfenltOverflow(s) |
Функция возвращает используемое по умолчанию значение переполнения. Оно равно s'Float(infinity), где s=l или s=-l |
DefaultUnderflov( s) |
Функция возвращает используемое по умолчанию значение потери значимости. Оно равно s*0.0, где s=l или s=-l |
frem(x,y) |
Остаток отделения х на у, вычисляемый согласно правилу frem(x,y)=x-y*N, где N является ближайшим целым числом к отношению х/у |
ilog[b](x) |
Целочисленный логарифм х по основанию Ь |
ilog2(x) |
Целочисленный логарифм х по основанию 2 |
iloglO(x) |
Целочисленный логарифм х по основанию 10 |
Im(x) |
Мнимая часть числа х |
NextAfter(x,y) |
Возвращается следующее доступное после х число в направлении числа у. Доступность в данном случае определяется возможностями системы, а отношение "следующее" задается системными настройками и, в частности, значением переменной среды Digits. Если х является наименьшим (наибольшим) доступным положительным числом и х>у (х<у), функцией возвращается значение 0.0 (infinity) и генерируется событие underflow - потеря значимости (overflow—переполнение) |
NumericClass(x) |
Возвращается класс числа х. Классификация основывается на поддерживаемых в Maple типах данных |
OrderedNE(x,y) |
Функция проверки наличия упорядоченности. Функция возвращает значение true только в тех случаях, когда х<у или у<х. Если один из аргументов является комплексным, возвращается значение FAIL
|
Re(x) |
Действительная часть числа х |
ScalelO(x,N) |
Функция масштабирования числа х согласно правилу Scalel0(x, N)=x*10AN |
Scale2(x,N) |
Функция масштабирования числа х согласно правилу Scale2(x, N)=x*2AN |
SfloatMantissa(x) |
Вычисление мантиссы числа х |
SfloatExponent(x) |
Вычисление показателя экспонирования числа х |
Unordered(x,у)
|
Проверка отсутствия упорядоченности между х и у (проверка на предмет того, является ли одно из этих чисел больше другого). Функция возвращает значение true, если упорядоченность отсутствует, и false — при наличии упорядоченности |