
- •Введение
- •1. Основные сведения из формальной логики
- •1.1. Введение в формальную логику
- •1.2. Формы познания человеком окружающего мира
- •1.3. Формы абстрактного мышления
- •«Все s есть p»,
- •«Если s есть p, то s есть p1».
- •1.4. Содержательное описание основных законов классической формальной логики и границы их применимости
- •1.5. Способы правильных умозаключений, обусловленных основными законами формальной логики.
- •1.6. Правильные способы рассуждений, основанные на теории силлогизмов
- •Вопросы для самоконтроля
- •2. Элементы теории множеств
- •2.1. Понятие множества. Способы задания множеств
- •Упражнения
- •2.2. Части множеств
- •2.2.1. Понятие подмножества
- •2.2.2. Множество-степень
- •2.2.3. Понятие о верхней и нижней гранях множеств
- •2.3. Операции над множествами.
- •2.4. Основные свойства операций над множествами
- •2.5. Отношения на множествах
- •2.5.1. Операции над отношениями
- •2.5.2. Основные свойства отношений
- •2.6. Функции как отношения на множествах
- •2.7. Отношения эквивалентности
- •2.8. Отношения порядка
- •Упражнения
- •Парадоксы теории множеств
- •Вопросы для самоконтроля
- •1. Алгебра логики
- •Понятие о простом и сложном высказывании
- •Упражнения
- •Логические операции над высказываниями
- •Упражнения
- •Упражнения
- •1.4. Аксиомы и законы алгебры логики
- •1.4.1. Правила склеивания для элементарных конъюнкций и дизъюнкций
- •Дизъюнкций
- •1.4.3. Правило развёртывания
- •Все ке для двух высказываний
- •Развёртывание элементарной дизъюнкции
- •Упражнения
- •1.5. Функции алгебры логики. Нормальные формы логических функций
- •Общая запись любой логической функции в сндф имеет вид
- •Пример. По заданной таблице истинности составить сндф функций
- •Снкф для выше приведенной таблицы истинности будут иметь вид
- •Упражнения
- •1.6.Минимизация логических функций
- •1.6.1. Расчетный метод минимизации
- •1.6.2. Табличный метод минимизации
- •1.6.3. Расчетно-табличный метод минимизации (метод Квайна)
- •Упражнения
- •1.7. Некоторые применения алгебры логики
- •Упражнения
- •Вопросы для самоконтроля
- •2. Исчисление высказываний
- •2.1. Понятие формулы исчисления высказываний
- •Упражнения
- •2.2. Аксиомы и простейшие правила вывода
- •Система аксиом исчисления высказываний
- •Тогда правило подстановка схематически запишется так
- •2.3. Определение доказуемой формулы
- •Рассмотрим примеры получения доказуемых формул.
- •2.4. Производные правила вывода
- •Упражнения
- •2.5. Определение формулы, выводимой из совокупности формул н
- •2.6. Понятие вывода
- •2.7. Основные правила выводимости
- •2.8. Доказательство некоторых законов логики
- •2.9. Проблемы аксиоматического исчисления высказываний
- •Вопросы для самоконтроля
- •3. Логика предикатов
- •3.1. Понятие предиката
- •3.2. Логические операции над предикатами
- •Упражнения
- •Кванторные операции
- •Упражнения
- •Определение формулы логики предикатов
- •3.5. Равносильные формулы логики предикатов
- •Упражнения
- •3.6. Предварённая нормальная форма
- •Выполнимость и общезначимость формул
- •Упражнения
- •Применение языка логики предикатов в математике и технике
- •Вопросы для самоконтроля
- •4. Основные положения теории алгоритмов
- •4.1. Интуитивное понятие алгоритма
- •4.2. Уточнение понятия алгоритма
- •4.3. Частично-рекурсивные и общерекурсивные функции
- •Упражнения
- •4.4. Машины Тьюринга
- •Упражнения
- •4.5. Понятие о нормальных алгоритмах Маркова
- •4.6. Алгоритмически неразрешимые проблемы
- •4.7. Сложность алгоритмов
- •Вопросы для самоконтроля
- •Ответы и решения
- •Раздел 1
- •Подраздел 1.3
- •Раздел 2
- •Раздел 3.
- •Раздел 4
- •Библиографический список
- •Список сокращений
- •Содержание
2.2.3. Понятие о верхней и нижней гранях множеств
При рассмотрении числовых множеств часто возникает необходимость установления их граничных значений. Если множество задано перечислением его элементов, то это делается без особого труда путем выделения его минимального и максимального значений. Например, для множества X = {0, 1, 2, 4, 8} min x = 0, max x = 8.
Если же множество задано в «форме от х», то указать минимальное и максимальное его значения не всегда оказывается просто, а иногда они и не существуют. Например, для множества N натуральных чисел минимальным числом является единица. А максимальное число не существует. Для множества Z целых чисел не существует ни минимума, ни максимума.
В подобных случаях
используют понятия верхней
и
нижней граней множества
(иногда говорят о верхней и нижней
границах). Рассмотрим эти понятия более
подробно. Пусть задано некоторое
множество X
действительных
чисел. Число а
называется его верхней гранью и
обозначается sup
X
(от лат.
supremum
– наивысшее),
если для любого числа х
Х
выполняется неравенство
и, каково бы ни было число аʹ
< а, существует
такое число хʹ
Х ,
что хʹ
> аʹ.
Число b
называется нижней гранью множества Х
и обозначается
inf
X
(от лат.
infimum
– наинизшее),
если для любого х
Х
выполняется неравенство
и, каково бы ни было число bʹ
> b,
существует такое хʹ
Х,
что хʹ
˂ bʹ.
Для рассмотренного выше множества X ={0, 1, 2, 4, 8} очевидно, что
min X =
inf X
= 0, max
X = sup X
= 8. Однако
для неограниченного сверху множества
N
натуральных чисел min
N
= inf
N
= 1, а max
N
не существует, но sup
N
= +
.
В этом и состоит различие между минимальным
значением и инфимумом, а также между
максимальным значением и супремумом
некоторого множества Х.
Если будем рассматривать множество Z,
то ни минимального, ни максимального
его значений не существует, но inf
Z = –
,
а sup
Z
= +
.
Приведенные примеры возможно не очень убедительны, так как использование символов – и + является искусственным приемом (за ними не скрывается никакого определенного числа). Если же рассматривать хорошо известные со школьной скамьи понятия отрезка и интервала (иногда употребляют термины закрытый и открытый интервалы соответственно), то обнаружим, что в этом случае наши представления о различиях между max и sup, min и inf обретут вполне реальную конкретизацию.
Например, для отрезка 1 ≤ х ≤ 3 при х R min x = inf x = 1, max x = = sup x = 3. Однако для интервала 1 ˂ х ˂ 3 при х R снова inf x = 1, а sup x = 3. Но при этом, ни min x, ни max x не существуют. Действительно в последнем примере, какие бы вещественные числа, близкие к единице или к трем, мы не задавали, всегда можно указать еще более близкие к единице или трем действительные числа. В то же врем в соответствии с приведенным выше определением верхней и нижней граней множества, числа 1 и 3 являются inf x и sup x соответственно. Таким образом, различие между экстремальными значениями (max x и min x), верхней и нижней гранями (sup x и inf x) проявляются однозначно.
Чисел, которые могут рассматриваться в качестве верхней или нижней граней множества, может быть бесконечно много. Для устранения такой неоднозначности введено понятие точной верхней и точной нижней граней множества. Под точной верхней гранью множества Х понимают такую верхнюю грань, которая не превосходит любую другую. Под точной нижней гранью множества Х, понимают такую нижнюю грань, которая не меньше любой другой грани.
Исходя из приведенных
определений, символически точные верхние
и нижние грани множества, если его
представлять в виде последовательности
действительных чисел, можно записать
через верхний и нижний пределы:
для конечных
множеств и
для бесконечных множеств.
Однако чтобы не перегружать символикой понятия точной верхней и нижней граней пределы опускают и в качестве точной верхней и нижней граней принимают соответственно sup X и inf X.
Наконец, следует отметить, что всякое непустое множество действительных чисел имеет, и притом единственную, верхнюю и нижнюю конечную или бесконечную грани.