- •1. Введение
- •Основные определения
- •1.2 Реальный объект и расчетная схема
- •1.2.1 Схематизация свойств материала
- •1.2.3 Схематизация опорных устройств
- •1.2.4 Схематизация системы внешних сил
- •1.3 Принципы сопротивления материалов
- •1.3.1 Принцип Сен-Венана
- •2.2. Напряжения и деформации
- •2.2.1. Напряжения
- •2.2.2. Связь компонентов внутренних сил с напряжениями
- •2.2.3 Деформации. Деформированное состояние в точке тела
- •2.2.4 Обобщенный закон Гука для изотропного тела
- •2.3. Удельная потенциальная энергия деформации
- •3. Растяжение и сжатие
- •3.1 Определение внутренних усилий
- •3.2 Определение напряжений
- •3.3 Определение деформаций и перемещений
- •Для разных материалов
- •3.4 Потенциальная энергия деформации при растяжении
- •3.5 Концентрация напряжений
- •3.6 Статически неопределимые задачи при растяжении и сжатии
- •4. Механические характеристики материалов и расчеты на прочность при растяжении (сжатии)
- •4.1 Определение механических свойств материала при растяжении
- •4.2 Диаграммы условных и истинных напряжений
- •4.3 Механические характеристики материалов
- •4.4 Закон разгрузки и повторного нагружения
- •4.5 Пластичные и хрупкие материалы
- •4.6 Механические свойства при сжатии
- •4.7 Влияние температуры на механические характеристики
- •4.8 Ползучесть, последействие и релаксация
- •4.9 Коэффициент запаса прочности. Выбор допускаемых напряжений
- •4.10 Основные типы задач при расчете на прочность растянутых (сжатых) стержней
- •5. Геометрические характеристики плоских сечений
- •5.2 Зависимость между моментами инерции относительно параллельных осей
- •5.3. Моменты инерции простейших фигур
- •5.4 Вычисление моментов инерции сложных фигур
- •5.5. Изменение моментов инерции при повороте осей координат
- •5.6. Главные оси и главные моменты инерции
- •5.7 Моменты сопротивления площади сечения
- •Тема 6.
- •6. Кручение
- •6.1 Внутренние силовые факторы при кручении
- •6.2. Напряжения и деформации при кручении вала
- •6.3 Потенциальная энергия деформации при кручении
- •6.4. Расчеты на прочность и жесткость при кручении
- •6.5 Расчет цилиндрических винтовых пружин малого шага
- •6.6. Статически неопределимые задачи при кручении
- •7.1 Расчет на срез
- •7.2 Чистый сдвиг
- •7.6 Расчет сварных соединений.
- •8. Плоский прямой поперечный изгиб
- •8.1. Основные понятия и определения
- •8.2 Эпюры поперечных сил и изгибающих моментов
- •При плоском изгибе
- •8.3 Плоский прямой изгиб
- •8.4 Нормальные напряжения при чистом прямом изгибе
- •При чистом изгибе
- •При чистом изгибе
- •8.5. Касательные напряжения при плоском прямом изгибе
- •Из хрупких материалов
- •8.6 Расчеты на прочность при поперечном изгибе
- •8.7 Потенциальная энергия деформации при изгибе
- •9. Перемещения при изгибе
- •9.1 Перемещения при изгибе. Дифференциальное уравнение упругой линии балки и его интегрирование
- •9.2 Расчет на жесткость при изгибе
- •9.3. Определение перемещений с помощью интеграла Мора
- •9.4 Определение перемещений с помощью способа Верещагина
- •Нагружения балок
- •9.5.Балки переменного сечения
- •Рекомендуемая литература
2.2. Напряжения и деформации
2.2.1. Напряжения
Мерой
интенсивности внутренних сил,
распределенных по сечениям, служат
напряжения - усилия, приходящиеся на
единицу площади сечения. Выделим в
окрестности точки
малую площадку
(рис. 2.2). Пусть
-равнодействующая
внутренних сил, действующих на эту
площадку. Тогда среднее значение
внутренних сил, приходящихся на единицу
площади
рассматриваемой
площадки, будет равно:
(2.1)
Рис. 2.2. Среднее напряжение на площадке
Величина
называется средним
напряжением. Она
характеризует среднюю интенсивность
внутренних сил. Уменьшая размеры площади,
в пределе получим:
(2.2)
Величина
называется истинным напряжением или
просто напряжением
в
данной точке данного сечения.
Единица напряжения - паскаль; 1 Па = 1 Н/м2. Так как реальные значения напряжений будут выражаться очень большими числами, то следует применять кратные значения единиц, например МПа (мегапаскаль); 1 МПа = 1 Н/мм2 = 10б Н/м2.
Напряжения, как и силы, являются векторными величинами. В каждой точке сечения тела полное напряжение можно разложить на две составляющие (рис. 2.3):
1)
составляющую, нормальную к плоскости
сечения. Эта составляющая называется
нормальным
напряжением и
обозначается
;
2)
составляющую, лежащую в плоскости
сечения. Эта составляющая обозначается
и называется касательным
напряжением. Касательное
напряжение в зависимости от действующих
сил может иметь любое направление в
плоскости сечения. Для удобства
представляют
в виде двух составляющих по направлению
координатных осей. Принятые обозначения
напряжений показаны на рис. 2.3.
Рис. 2.3. Разложение вектора полного напряжения
У нормального напряжения ставится индекс, указывающий какой координатной оси параллельно данное напряжение. Растягивающее нормальное напряжение считается положительным, сжимающее - отрицательным. Обозначения касательных напряжений имеют два индекса: первый из них указывает, какой оси параллельна нормаль к площадке действия данного напряжения, а второй, - какой оси параллельно само напряжение. Разложение полного напряжения на нормальное и касательное имеет определенный физический смысл. Нормальное напряжение возникает, когда частицы материала стремятся отдалиться друг от друга или, наоборот, сблизиться. Касательные напряжения связаны со сдвигом частиц материала по плоскости сечения.
Если мысленно вырезать вокруг какой-нибудь точки тела элемент в виде бесконечно малого кубика, то по его граням в общем случае будут действовать напряжения, представленные на рис. 2.4. Совокупность напряжений на всех элементарных площадках, которые можно провести через какую-либо точку тела называется напряженным состоянием в данной точке.
Рис. 2.4. Система напряжений в точке
Вычислим
сумму моментов всех элементарных сил,
действующих на элемент (рис.2.4), относительно
координатных осей, так, например, для
оси
с учетом равновесия элемента, имеем:
(2.3)
Повторяя указанные действия для других осей, получим закон парности касательных напряжений:
(2.4)
который формулируется следующим образом: составляющие касательных напряжений на двух взаимно перпендикулярных площадках, перпендикулярные общему ребру, равны по величине и противоположны по знаку, то есть либо обе направлены к ребру либо обе направлены от ребра.
