
- •1) Классификация основных методов источников загрязнения.
- •2) Применимость методов очистки атмосферного воздуха в зависимости от типа иза и загрязняющих веществ.
- •3.Основные свойства пылей,учитываемые при применении природоохранных технологий.
- •5. Циклоны – принцип работы,достоинства и недостатки очистки
- •7) Групповые и батарейные циклоны.
- •8. Вихревые, динамические пылеуловители – сравнение с циклонами.
- •9. Классификация фильтров. Применимость в производстве и быту. Зернистые фильтры.
- •10. Характеристика основных фильтровальных тканей, и волокнистых фильтров.
- •11.Мокрое пылеулавливание-классификация,достоинства и недостатки методов
- •12. Скрубберы. Основные типы газопромывателей (полые, с различными типами насадок, тарельчатые, скоростные).
- •13.Газопромыватели ударно-инерционного,центробежного действия
- •14. Методы электроочистки пром.Газов – принцип работы, достоинства и недостатки очистки
- •15. Улавливание туманов, классификация, применение в производстве.
- •17)Абсорбционные методы очистки производственных газов от диоксида серы.
- •18)Абсорбционные методы очистки производственных газов от сероводорода
- •20)Абсорбционные методы очистки от оксидов азота и угарного газа(Ребята! То, что выделено жирным курсивом, это из лекций, диктовать обязательно. При диктовке методов выберите любой на ваш вкус!)
- •21. Процесс адсорбции. Достоинства и недостатки очистки пром.Газов.
- •22. Адсорбционные методы очистки производственных газов от лос.
- •23.Адсорбционные методы очистки производственных газов от nOx и so2
- •24) Характеристика адсорбентов
- •25. Адсорбционные методы очистки производственных газов от галогенов и их соединений.
- •26.Адсорбционные методы очистки производственных газов от соединений серы(сероводород,сероорганические соединения)
- •27. Природоохранные мероприятия, способствующие улучшению процесса рассеивания загрязняющих веществ.
- •28. Классификация методов очистки сточных вод
- •Механический метод очистки сточных вод.
- •Методы физико-химической очистки сточных вод.
- •Биологические методы очистки сточных вод.
- •29. Основные свойства загрязняющих веществ, учитываемые при выборе метода очистки
- •31. Физические методы очистки – процеживание, отстаивание.
- •32. Физические методы очистки – фильтрация, удаление всплывающих примесей.
- •34. Физико-химические методы очистки – коакуляция, флотация, флокуляция.
- •35. Химические методы очистки – нейтрализация.
- •36. Химические методы очистки – окисление, восстановление.
- •37. Удаление ионов металлов из сточных вод.
- •38. Электро-химические методы
- •39. Биохимические методы очистки - аэробные методы.
- •40. Биохимические методы очистки – анаэробные.
- •41. Классификация о.
- •42. Методы переработки отходов – механическая.
- •43. Методы переработки отходов – обогащение.
- •45) Методы защиты от ионизирующих излучений
- •46. Методы защиты от неионизирующих излучений
- •47. Особенности технологического процесса: производство серной кислоты
- •48.Особенности технологического процесса – производство фосфорных удобрений.
- •50. Особенности технологического процесса – производство кальцинированной соды.
- •51. Особенности технологического процесса в горнодобывающей промышл-ти – Песчанно гравийная смесь
- •52. Особенности технологического процесса добычи нефти
- •53. Особенности технологического процесса- в черной металлургии
- •55. Особенности технологического процесса – в теплоэнергетике.
- •56. Особенности технологического процесса - в пищевой промышленности (птицефабрика).
22. Адсорбционные методы очистки производственных газов от лос.
Потери растворителей свыше 800 т/год. Это целая двойная проблема: экологическая и экономическая. Необходима рекуперация на уровне крупных цехов. Улавливание паров может быть любыми мелкопористыми адсорбентами.
Наиболее предпочтительны активные угли, они являются гидрофобными, при относительной влажности до 50%, при этом влага практически не влияет на сорбированность ЛОС. Адсорбенты применяют при высоких скоростях потто, до 10 – 100 000 м3/час.
Применяют различные тканные и нетканые материалы на основе углеродно-активных потоков. Эффективность 90-98%.
23.Адсорбционные методы очистки производственных газов от nOx и so2
В промышленной практике использование адсорбентов как агентов аккумуляторов оксидов азота ограничена. Достаточно эффективными поглотителями оксидов азота являются активированные угли. Однако, при их контакте с оксидами азота возможны возгорания и даже взрывы. Так же активированные угли характеризуются низкой механической прочностью.
Адсорбционная способность по NO силикагелей несколько ниже, чем у активированных углей. Однако они не имеют недостатков, которые указаны выше. С использованием силикагелей можно достигать высокой очистки от оксидов азота. В промышленности этот метод не используется из-за экономических аспектов.
Алюмогели обладают сравнительно небольшой поглощающей эффективностью по оксидам азота и стоимостью.
Алюмосиликаты хорошо поглощают оксиды азота, обладают высокой механической устойчивостью.
Присутствующая в отходящих газах влага сорбируется вместе с оксидами азота. Из-за диффузии и малой адсорбционной емкости адсорбентов, больших затрат тепла на их регенерацию адсорбция оксидов азота твердым сорбентом не имеет практического применения; для этих целей предложены природные адсорбенты (торфы, бурые угли) – которые не нуждаются в регенерации.
Преимущества адсорбционных методов перед абсорбционными:
- компактность и простота конструкции аппаратуры, отсутствие сточных вод;
Недостатки методов:
цикличность (адсорбция, десорбция);
необходимость проведения регенерации при высоких температурах с последующей утилизацией оксидов азота;
поглощение адсорбентами не только оксидов азота, но и других примесей, включая влагу.
Хемосорбционные методы применяют для одновременной очистки отходящих газов от оксидов азота и серы. В качестве сорбентов используются соединения меди, которые поглощают оксиды серы, а оксиды азота восстанавливают с помощью NH3. Процесс проводят в кипящем слое при температуре 400 – 450 0С. В качестве других широкодоступных и дешевых поглотителей оксидов азота можно использовать известняк, известь, зола. При этом отработанные хемосорбенты можно направлять на нейтрализацию кислых стоков в производстве или в сельском хозяйстве в качестве азотсодержащих удобрений.
В качестве хемосорбентов могут быть использованы известняк, доломит или известь. Для увеличения активности хемосорбентов, подавления процесса окисления SО2 в SОз и решения некоторых других задач наряду с поглотителем диок-сида серы вводят ряд специальных добавок в виде дешевых неорганических солей, оксихлорида меди, оксида магния и других веществ.могут быть использованы и некоторые оксиды металлов. среди них являются оксиды Al, Bi, Се, Со, Cr, Cu, Fe, Hf, Среди исследованных и опробованных методов некоторую практическую реализацию получил окисно-марганцевый метод.
По этому методу горячие дымовые газы (≈135°С) обрабатывают оксидом марганца в виде порошка. В процессе контакта оксида марганца с диоксидом серы и кислородом происходит реакция
MnOх • nH2O+SO2+(l— х/2)О2 → MnSO4+nH2O,
Образующийся сульфат марганца после его выделения из газа обрабатывают в виде водной пульпы аммиаком с целью, регенерации оксида марганца:МnSО4+2NН3+(n+1)Н2О+(x—1)/2О2 → MnOх • nH2O +(NH4)2SO4.
окисно-марганцевый метод в соответствии с такой технологией обеспечивает его 90%-е извлечение.
Преимущества сухих методов очистки газов от SO2: возможность обработки газов при повышенных температурах без увлажнения очищаемых потоков, что позволяет снизить коррозию аппаратуры, упрощает технологию газоочистки и сокращает капитальные затраты на нее. Наряду с этим они обычно предусматривают возможность цикличного использования поглотителя и (или) утилизацию продуктов процесса очистки газов.
Недостатки:
- значительные затраты на регенерацию;
- необходимость выполнения реакционной аппаратуры из дорогостоящих материалов, так как процессы идут в условиях коррозионных и повышенных температурах.
К сухим способам относят также каталитическое окисление диоксида серы и поглощение диоксида серы адсорбентами.
Среди сухих способов адсорбционного улавливания диоксида серы в наибольшей степени исследованы и опробованы в производственных условиях (применительно к газам процессов сжигания твердого и жидкого топлива) углеродные поглотители (активные угли), позволяющие проводить обработку газов при 110–150 °С.
Для регенерации насыщенных поглотителей могут быть использованы термический и экстракционный способы. При термической регенерации необходимы: нагрев адсорбента газовым или твердым теплоносителем до 400 – 450 0С с целью разложения серной кислоты. Экстракционная регенерация сводится к. обработке насыщенного поглотителя подогретой водой, приводящей к получению разбавленных растворов серной кислоты (10–15%-й). Последние необходимо концентрировать упариванием.
Ввиду дефицитности и высокой стоимости адсорбентов могут быть рекомендованы лишь для обработки относительно небольших объемов отходящих газов в производствах серной кислоты и целлюлозы, на нефтеперерабатывающих предприятиях и др.
Сорбционная способность силикагелей по диоксиду серы составляет существенную величину даже при высоких температурах (150–200 °С) и низких концентрациях целевого компонента в газах [<1% (об.)], что объясняют происходящим окислением адсорбированного SO2 в SOS кислородом, содержащимся в обрабатываемых потоках. Регенерацию насыщенного поглотителя ввиду его негорючести можно проводить нагретым воздухом. Если в очищаемых газах содержатся пары воды, величина поглощения силикагелями диоксида серы резко уменьшается.
В качестве поглотителей диоксида серы из газов исследованы ионообменные смолы – аниониты; кислотостойкие цеолиты, в том числе природные.
Большинство сухих методов очистки газов от диоксида серы требует значительных затрат тепла на регенерацию. Их реализация связана также с повышенными капитальными затратами ввиду необходимости выполнения адсорбционной аппаратуры из дорогостоящих специальных материалов. Это препятствует внедрению адсорбционных процессов для очистки газов.