
- •1.Конструкц., принцип действия и безразмерные размеры центробежного холл. Км.
- •2.Планировка машинных отделений холодильников. Централизованная и децентрализованная системы холодоснабжения.
- •3.Организация монтажных работ. Содержание подготовительного этапа работ.
- •2.Планировка машинных отделений холодильников. Централизованная и децентрализованная системы холодоснабжения.
- •3.Схема, принцип действия, изображ. В h-ξ – диаграмме теоретического цикла абхм
- •Количество теплоты, отведенной от горячего спая:
- •Потребляемая мощность:
- •2. Схема охлаждения с помощью промежуточного хладоносителя.
- •3. Определение мест утечки ха. Пополнение системы ху ха
- •1.Конструкция и принцип действия двухроторного, маслозаполненного винтового компрессора
- •2. Влияние присутствия смазочного масла и воздуха в системе на работу холодильной установки. Влияние присутствия воды и механических загрязнений в системе на работу холодильной установки.
- •3.Расчет тепловых потоков теоретического цикла абсорбционной бромисто–литиевой хм.
- •1.Двухступенчатые холодильные машины.
- •2.Увлажнение т/из материалов в ограждающих конструкциях
- •3.Особенности монтажа малых ху. Техника безопасности при проведении монтажных работ
- •1.Теоретический и действительный поршневой компрессор
- •2.Влияние присутствия воды и механических загрязнений в системе на работу холодильной установки.
- •3.Последовательнось и содержание основных операций при монтаже холодильного оборудования.
- •1.Регулирование производительности поршневых компрессоров.
- •2.Расчет теплопритоков в охлаждаемые помещения. Итоговые данные расчета.
- •3.Схема, принцип действия и изображение теоретического цикла пароэкжекторной холодильной машины в s-t -диаграмме.
- •1.Тепловой и конструктивный расчет испарителей для охлаждения жидкостей.
- •2.Системы отвода теплоты конденсации хладагента. Атмосферные охладители циркулярной воды.
- •1. Назначение и конструкция основных узлов и деталей холодильных поршневых компрессоров.
- •2.Определение основных строительных размеров охлаждаемых помещений. Планировка холодильника.
- •3.Расчет тепловых потоков действительного цикла абсорбционной бромистолитиевой холодильной машины.
- •1.Теоретический и действительный циклы и схемы каскадных х.М.
- •2 Типы холодильников. Сущность непрерывной холодильной цепи.
- •3.Техническое обслуживание (то) основных теплообменных аппаратов х/у. Удаление инея с поверхности камерных приборов системы непосредственного охл.
- •Конструкц., принцип действия и безразмерные размеры центробежного холл. Км.
- •2 Расчет и подбор холодильных компрессоров
- •3. Тепловой расчет простейшей авхм
- •1 Ротационные пластинчатые холодильные км
- •2 Системы охлаждения с помощью промежуточных хладоносителей. Достоинства и недостатки, область применения. Принцип выбора типа хладоносителя.
- •3 Рабочая схема, принцип действия пароводяной эжекторной холодильной машины с поверхностными конденсаторами.
- •1. Классификация поршневых компрессоров (пкм).
- •2 Расчет и подбор основного теплообменного оборудования.
- •3.Обслуживание и ремонт ти ограждающих конструкций
- •1.Схемы, циклы и расчет циклов одноступенчатых холодильных машин.
- •2. Малые х/у
- •3. Виды износа, методы дефектации и восстановления элементов оборудования ху
- •1.Тепловой и конструктивный расчёт конденсаторов х.М.
- •2. Бытовые холодильники (бт)
- •3.Схема, принцип действия и изображение цикла простейшей абсорбционной водоаммиачной холодильной машины (авхм)
- •1. Типы и конструкции конденсаторов хол. Маш.
- •2. Схема узла включения компрессоров одно- и двухступенчатого сжатия.
- •3.Особенности действительных процессов абсорбционных Br-Li хм. Изображение действительного цикла.
- •1.Тепловой и конструктивный расчет испарителей для охлаждения воздуха.
- •2. Назначение, предъявляемые требования и классификация теплоизоляционных материалов.
- •3. Особенности действительного цикла пароэжекторной хм. Изображение действительного цикла в и диаграммах.
- •1 Рабочие характеристики, регулирование производительности центробежных холодильных компрессоров
- •2 Система непосредственного охлаждения. Дост-ва, нед-ки, область применения. Батарейное и воздушное охлаждение
- •3 Организация ремонта оборудования ху. Подготовка и основные этапы ремонтных работ
- •1. Конструкции, принцип действия, достоинства, недостатки, основы расчета холодильных ротационных компрессоров с катящимся ротором.
- •2 Предъявляемые требования и классификация схем х.У.Определение диаметра трубопровода для хладогентов и хладоносителей
- •3 Техническое обслуживание холодильных км.
- •1 Газовые холодильные машины с вихревыми трубами. Классификация газовых холодильных машин.
- •2 Схема узла подачи ха в испарительную систему. Способы подачи ха в охлаждающие приборы.
- •3 Схема, принцип действия, изображение цикла в h-ξ диаграмме и тепловой расчет абсорбционной водоаммиачной хм (авхм) с то и водяным дефлегматором
- •1 Винтовые холодильные компрессоры
- •2 . Компаудные схемы х.У. Принцип действия, разновидности, достоинства и недостатки.
- •3 Оптимальный режим работы ху. Отклонения от опт-го режима, их выявление и устранение
Билет 1
1.Конструкц., принцип действия и безразмерные размеры центробежного холл. Км.
Основными рабочими органами турбокомпрессоров являются колеса. В них механическая энергия от лопаток передается пару холодильного агента. В зависимости от направления движения потока за рабочим колесом, компрессоры бывают осевые, вихревые, центробежные и др. Наибольшее распространение получили центробежные компрессоры.
Конструкция и принцип действия центробежного компрессора
Компрессор состоит из корпуса с горизонтальным разъемом и верхней крышки. В корпусе и крышке на опорных подшипниках вращается вал. На валу насажено одно или несколько рабочих колес. В компрессоре кроме вала и рабочих колес все остальные элементы неподвижные.
За рабочими колесами в корпусе и крышке расположены диффузоры. Диффузор представляет собой объем между боковыми поверхностями. За диффузором имеется участок кольцевого поворота. После участка кольцевого поворота расположен обратный направляющий аппарат(ОНА). В ОНА имеются лопатки, причем угол закрутки лопаток противоположный углу закрутки рабочего колеса. Рабочее колесо, диффузор, участок кольцевого поворота, ОНА составляют одну ступень сжатия в компрессоре.
В компрессоре столько ступеней сжатия, сколько рабочих колес. В каждой ступени сжатия давление повышается на небольшую величину. Для аммиака на 0,5-1 атмосферы, для хладонов на 1-2 атмосферы.
Перед первым рабочим колесом имеется специальное входное устройство в виде улитки или спирали Архимеда.(рис.41)
Между собой ступени уплотняются бесконтактными лабиринтными уплотнениями.(рис.42). Для предотвращения осевого сдвига вала на нем установлен разгрузочный поршень-думмис.
Принцип действия. Пар холодильного агента после испарителя поступает во входное устройство, где ему придается осевое направление. Далее после входного устройства поток поступает на лопатки первого рабочего колеса со стороны вала. Рабочее колесо вращается с большой скоростью 10-12 тыс. оборотов в минуту, захватывает его и придает ему механическую энергию. На лопатках рабочего колеса возникают центробежные силы инерции. Под действием центробежных сил инерции поток выбрасывается с лопаток рабочего колеса в диффузор в радиальном направлении. В диффузоре резко снижается скорость и увеличивается давление. Из диффузора поток поступает в участок кольцевого поворота, где его направление меняется на противоположное (на 180 градусов). После участка кольцевого поворота поток холодильного агента направляется на лопатки обратно направляющего аппарата (ОНА). В ОНА происходит раскручивание потока и придание потоку осевого направления. Из ОНА первой ступени поток в осевом направлении поступает на лопатки второго рабочего колеса и все процессы повторяются. После диффузора последней ступени пар выбрасывается в выходное устройство компрессора.
Преимущества центробежных компрессоров
1.Более высокие объемные и энергетические показатели при холодопризводительности более 1500кВт.
2.Практически полная уравновешенность конструкции. Могут работать без фундамента вообще.
3.Отсутствие пульсации потока.
4.Значительно меньший унос масла в систему.
5.Так как отсутствуют пары трения, то такие компрессоры обладают высокой надежностью и долговечностью конструкции.
6. Возможность использования одного компрессора для многоступенчатого сжатия. Сколько в компрессоре рабочих колес столько ступеней сжатия.
Недостатки центробежных компрессоров
1.Сложность , трудоемкость изготовления компрессора.
2. Необходимость установки мультипликатора, т.к это большие аппараты. 10-12 тыс. оборотов в минуту.
3.Худшие объемные и энергетические показатели при холодопризводительности меньше 1500кВт.
4.Небольшой диапазон регулирования производительности до 60%-80%(на 20%-40%).
5.При значительном уменьшении производительности компрессора может наступить режим помпажа.
Помпаж-срыв потока с лопаток рабочего колеса и движение потока в противоположном направлении. Работа компрессора в режиме помпажа недопустима.
Безразмерные параметры турбокомпрессоров
В
расчетах центробежных КМ используют
безразмерные параметры. При сжатии
одного и того же рабочего в-ва в
геометрически подобных ступенях и на
газодинамических подобных режимах
работы безразмерные параметры будут
одинаковыми. Х-рным геометрическим
размером считается наружный диаметр
рабочего колеса
,
х-рной скоростью – окружная скорость
колеса
на диаметре
,
характерной плотностью – плотность
торможения
при входе в ступень.
Безразмерные геометрические размеры определяют делением соответствующих размеров на диаметр . Они обозначаются теми же символами, что и действительные размеры, но с чертой сверху:
;
Важный геометрический размер рабочего колеса центробежного КМ – безразмерная ширина лопатки при входе на диаметре:
Безразмерные скорости определяются делением скоростей на окружную скорость:
;
Тильдой
сверху обозначаются безразмерные
относительные скорости. Важнейшими
безразмерными скоростями в теории
центробежных КМ является коэффициент
теоретической работы:
и
коэффициент расхода
Условный
коэффициент расхода
Условная скорость определяется по плотности торможения при входе в ступень
В результате условный коэффициент расхода записывается так:
Безразмерные плотности определяются делением плотностей в х-рных сечениях на плотность торможения при входе в ступень и обозначаются
Критерием гидродинамического подобия потоков рабочего в-ва служит число Маха, равное отношению скорости потока в данном сечении скорости в данном сечении к скорости звука в движущемся в-ве:
;
Этот
важный критерий определяет отношение
скорости передачи возмущений в в-ве,
определяемой колебанием молекул, и
скорости движения потока. Режим, при
котором скорость потока ровна скорости
звука, т.е. М=1, является критическим,
т.к. начиная с него возмущения могут
передаваться только вниз по потоку.
Течение в-в при
сопровождается обычно потерями,
связанными с волновым сопротивлением,
проявляющимся в возникновении скачков
уплотнения и связанных с ними
необратимостей.
Используя метод условных температур, можно определить приближенно скорость звука:
Газодинамическое подобие процессов в ступени центробежного КМ определяется условным числом Маха по окружной скорости
Производительность центробежного КМ х-зуется условным числом Маха во входном сечении
Производительность отдельной ступени х-уется условным числом Маха при входе в колесо