- •Теплообмен в поверхностях нагрева котла
- •Температура газового факела (Тф);
- •Температура наружних загрязнений (тнз);
- •Конвективный теплообмен
- •Регулирование температуры перегретого пара
- •Паропаровой теплообменник (ппто)
- •Газовые методы регулирования
- •Рециркуляция продуктов сгорания.
- •Изменение положения факела в топке
- •Байпасирование продуктов сгорания
- •Низкотемпературные поверхности нагрева (нтпн)
- •Водяные экономайзеры (эко)
- •Воздухоподогреватели
- •Рекуперативный воздухоподогреватель.
- •Регенеративный воздухоподогреватель
- •Статические и динамические характеристики котла.
- •2. Коэффициент избытка воздуха в топке ( ).
- •3. Температура питательной воды (tПв).
- •Влажность топлива ( ).
- •5. Зольность топлива ( ).
- •Динамические характеристики котла
- •Гидродинамика и температурный режим поверхностей нагрева
- •Истинная плотность смеси
- •Кратность циркуляции.
- •Режимы течения пароводяной смеси.
- •Кризисы теплообмена в парообразующих трубах
- •Условия надежной работы элементов парового котла.
- •Температурный режим труб котлов скд и особенности теплообмена в зоне фазового перехода
- •Гидродинамика котлов с естественной циркуляцией
- •Расчет контуров естественной циркуляции.
- •Расчет простого контура
- •Методика расчета сложного контура циркуляции
- •Надежность режимов циркуляции.
- •Полная гидравлическая характеристика парообразующей трубы контура естественной циркуляции
- •Критерии надежности циркуляции.
- •Причины появления пара в опускных трубах.
- •Гидродинамика прямоточных (разомкнутых) элементов котлов.
- •Причины неоднозначности
- •Влияние давления на гидравлическую характеристику
- •Меры повышения стабильности гидравлической характеристики
- •Гидравлическая устойчивость потока в вертикальных парообразующих трубах
- •Коллекторный эффект
- •Схемы включения элементов.
- •Тепловая и гидравлическая разверка
- •Водоподготовка и водный режим
- •Водоподготовка.
- •Очистка воды от нерастворимых примесей.
- •Удаление растворимых примесей.
- •Удаление газов из воды
- •2. Химическое удаление газов.
- •Пути перехода примесей в пар.
- •Механизм и закономерности капельного уноса
- •Методы получения чистого пара в котле с естественной циркуляцией
- •Осушка пара
- •Промывка пара
- •Водный режим барабанных котлов
- •Ступенчатое испарение
- •Схемы двухступенчатого испарения
- •Водный режим прямоточных котлов.
- •Образование внешних отложений.
- •Абразивный износ.
- •Коррозия.
- •Методы очистки поверхностей нагрева от наружных загрязнений
- •Схемы дробеочистки
- •Абразивный износ конвективных поверхностей нагрева.
- •Меры снижения абразивного износа.
- •Коррозия поверхностей нагрева
- •Методы борьбы с низкотемпературной коррозией.
- •Тепловая схема котла.
- •Тепловая схема барабанного котла.
- •Тепловая схема прямоточного котла.
- •Эксплуатация паровых котлов.
- •Режимы пуска котла.
- •Режим пуска должен удовлетворять следующим требованиям.
- •Основные определяющие параметры, характеризующие режим пуска.
- •Пуск барабанного котла неблочной тэс из холодного состояния.
- •Включение котла в общестанционную паровую магистраль.
- •Режимы останова котла.
- •Поведение металла при высоких температурах
- •Основные требования для металла паровых котлов.
- •Металл паровых котлов
- •Высоколегированные стали аустенитного класса
- •Расчет на прочность.
- •Расчетная температура
- •Расчет на прочность цилиндрических элементов.
- •Парогенераторы атомных станций Виды теплоносителей и требования к ним.
- •Органические теплоносители (жидкости).
- •Жидко – металлические теплоносители.
- •Общие характеристики и типы парогенераторов (пг).
- •Общие требования к конструкции пг.
- •Конструкции пг.
- •Параметры пг.
Байпасирование продуктов сгорания
В данном случае тепловосприятие ПЕ изменяется за счет изменения расхода газа через ПЕ. При этом возможны два варианта:
а) Байпасирование газов через холостой газоход.
Продукты сгорания
пароперегреватель;
холостой газоход;
регулирующий шибер.
(а) увеличение расхода газа через ПЕ будет снижать температуру газа за перегревателем; - снижается, - увеличивается.
б). В холостом газоходе установлена другая поверхность нагрева (например, экономайзер).
Продукты сгорания
(б) увеличение расхода газа через ПЕ ведет к росту температуры перегретого пара; к увеличение температуры газов за ПЕ, к увеличению и снижению .
ЛЕКЦИЯ №22
Низкотемпературные поверхности нагрева (нтпн)
К низкотемпературным поверхностям нагрева (НТПН) относятся поверхности, расположенные за конвективным пароперегревателем в конвективной шахте: водяной экономайзер (ЭКО) и воздухоподогреватель (ВП).
Компоновка НТПН зависит от требуемой температуры горячего воздуха.
Различают два вида компоновок: последовательную, когда за экономайзером располагается ВП; или в рассечку (двухступенчатая компоновка).
ВП является поверхностью нагрева, которая работает при минимальном температурном напоре и при минимальном коэффициенте теплопередачи (К); поэтому поверхность нагрева ВП превышает любую поверхность нагрева пароводяного тракта. Отношение водяных эквивалентов воздуха и газов.
,
так как
и
.
Поэтому при противоточной схеме включения минимальный температурный напор ВП наблюдается с горячей стороны, так как воздух нагревается быстрее, чем охлаждаются продукты сгорания.
Пр. сгорания
Воздух
Для
снижения разности температур
необходимо увеличить поверхность
нагрева. Экономически целесообразно
иметь
>30-40oC.
Для экономайзера, где теплоемкость воды много выше теплоемкости газов минимальная при противотоке наблюдается с холодной стороны, так как вода нагревается медленнее, чем охлаждаются продукты сгорания.
Рассмотрим одноступенчатую (последовательную) компоновку поверхностей нагрева и график изменения температур теплообменивающихся сред
Такая
компоновка применяется, когда требуется
температура горячего воздуха
не выше 300-350°С.
Для сжигания низкореакционных твердых топлив необходима более высокая температура горячего воздуха ( = 350-450°С). В этом случае применяется двухступенчатая компоновка НТПН или «в рассечку».
При двухступенчатой компоновке возрастает высота конвективной шахты, соответственно увеличиваются затраты металла и более высокими становятся присосы воздуха.
Водяные экономайзеры (эко)
В ЭКО воспринимается от 10 до 20% тепла, которое выделяется при сгорании топлива( ). Наиболее распространенным типом ЭКО являются стальные гладкотрубные, змеевиковые экономайзеры; схема включения – противоточная.
Используются
трубы с
.
Для удобства эксплуатации и ремонта
высота пакетов не должна превышать 1,5
м. Концы змеевиков соединяются
коллекторами, которые могут располагаться
за пределами газохода, но для снижения
присосов или уплотнения конвективной
шахты могут быть расположены и внутри
газохода. В этом случае они играют роль
опорной конструкции.
входной коллектор;
соединительный патрубок;
обмуровка газохода;
змеевик ЭКО;
опорная балка (может охлаждаться воздухом);
опорная стойка.
Движение воды в экономайзере всегда восходящее, что обеспечивает свободный выход с водой газов, выделяющихся при нагревании, и пара.
ЭКО: кипящие и некипящие.
Конструктивно они выполняются одинаково. В кипящем ЭКО максимальное паросодержание не должно превышать 30%.
Для обеспечения надежной работы ЭКО приняты следующие минимальные скорости воды в змеевиках:
или
- для некипящего экономайзера.
Этой скорости достаточно, чтобы пузырьки газов не скапливались в шероховатостях на верхней образующей труб. В противном случае, пузырьки агрессивных газов (О2, СО2) приведут к коррозии металла.
или
- для кипящего конвективного экономайзера.
Данной скорости достаточно для того, чтобы не наблюдалось расслоения пароводяной смеси, которое приводит к перегреву верхней образующей труб змеевиков.
-
для некипящего радиационного (НРЧ).
Надежность работы экономайзера, особенно при сжигании высокозольных твердых топлив, также зависит от расположения змеевиков по отношению к фронту котла. Различают расположение перпендикулярное фронту и параллельное фронту.
Схема I (расположение перпендикулярное фронту)
ЭКО;
водоперепускные трубы;
барабан.
Схема II (расположение параллельное фронту)
В схеме I износу будут подвергаться все змеевики вблизи задней стенки.
В схеме II интенсивнее изнашиваться будет та часть змеевиков, которая лежит в области вблизи задней стенки.
В схеме I змеевики более короткие, вследствие чего облегчается их крепление
