
- •1. Определители, их основные свойства и вычисление.
- •2. Системы линейных алгебраических уравнений, формулы Крамера.
- •3. Определение вектора, модуль вектора, коллинеарные и компланарные векторы, равенство векторов.
- •4. Линейные операции над векторами: сложение и вычитание векторов, умножение вектора на число, свойства этих операций.
- •5. Проекция вектора на ось, свойства проекции.
- •6. Базис, разложение вектора по базису, координаты вектора, линейные операции над векторами в координатах.
- •7. Скалярное произведение векторов, его основные свойства, условия параллельности и перпендикулярности.
- •8. Выражение скалярного произведения векторов через координаты сомножителей.
- •9. Вычисление модуля вектора, угла между векторами, работы силы; направляющие косинусы вектора.
- •10. Векторное произведение векторов, его основные свойства, геометрический и механический смысл.
- •11. Выражение векторного произведения векторов через координаты сомножителей.
- •12. Смешанное произведение трёх векторов, его выражение через координаты сомножителей, свойства и приложения.
- •18. Угол между двумя прямыми на плоскости.
- •19. Условие параллельности и перпендикулярности прямых.
- •20. Нормальное уравнение прямой, привидение общего уравнения прямой к нормальному виду, расстояние от точки до прямой.
- •21. Кривые второго порядка: окружность, эллипс, гипербола, парабола, вывод их канонических уравнений, исследование формы кривых, эксцентриситет и директрисы.
- •29. Матрицы, основные понятия и определения, сложение матриц, умножение матриц на число, умножение матриц, свойства этих операций; обратная матрица и правила её вычисления, ранг матрицы.
- •30. Критерий совместности системы линейных алгебраических уравнений (теорема Кронекера-Капелли), матричный метод решения системы.
- •31. Комплексные числа, их геометрическое изображение на комплексной числовой плоскости, равенство комплексных чисел, комплексно-сопряжённые числа.
- •32. Действия с комплексными числами в алгебраической форме.
- •37. Конечный и бесконечный пределы функции, их геометрическая иллюстрация.
- •38. Теорема об ограниченности функции, имеющей конечный предел.
- •39. Бесконечно малые и бесконечно большие величины, их свойства.
- •40 Основные теоремы о пределах.
- •41. Первый замечательный предел.
- •42. Предел показательно-степенной функции, второй замечательный предел.
- •43. Сравнение бесконечно малых величин, эквивалентные бесконечно малые величины.
- •44. Непрерывность функции в точке и на множестве, непрерывность элементарных функций.
- •45. Действия над непрерывными функциями.
- •46. Формулировка основных законов непрерывной функции на отрезке.
- •47. Односторонние пределы функции.
- •48. Точки разрыва функции, их классификация.
- •49. Производная функции, её геометрический и механический смысл, касательная и нормаль к плоскости кривой, их уравнения.
- •5 4. Гиперболические функции и их дифференцирование.
- •55. Производная показательно-степенной функции.
- •56. Параметрический способ задания функции, дифференцирование функции, заданной параметрически.
- •57. Дифференциал функции, её геометрический смысл, правила дифференцирования, дифференциал сложной функции и инвариантность его формы, приближённые вычисления с помощью дифференциала.
- •58. Производные и дифференциалы высших порядков, механический смысл второй производной.
- •59. Основные теоремы дифференциального исчисления: теорема Роля, теорема Лагранжа, теорема Коши.
- •60. Правило Лопиталя.
- •61. Формула Тейлора для произвольной функции с остаточным членом в форме Лагранжа.
- •62. Необходимое и достаточное условие постоянства функции.
- •63. Достаточное условие монотонности функции.
- •64. Экстремумы функции, необходимое условие существование экстремума, критические точки функции.
- •65. Первое достаточное и второе достаточное условие существования экстремума, наибольшее и наименьшее значения функции на отрезке.
- •66. Выпуклые и вогнутые кривые, достаточное условие выпуклости и вогнутости кривой.
- •67. Точки перегиба кривой, достаточное условие существование точки перегиба.
- •68. Асимптоты кривой.
65. Первое достаточное и второе достаточное условие существования экстремума, наибольшее и наименьшее значения функции на отрезке.
Первое достаточное условие экстремума: Пусть функция y = f(x) дифференцируема в -окрестности точки , а в самой точке непрерывна. Тогда:
если
при
и
при
, то - точка максимума;
если при и при , то - точка минимума.
Другими словами:
если в точке функция непрерывна и в ней производная меняет знак с плюса на минус, то - точка максимума;
если в точке функция непрерывна и в ней производная меняет знак с минуса на плюс, то - точка минимума.
Второй достаточный
признак экстремума функции:
Пусть
,
если
, то - точка минимума;
если
, то - точка максимума.
Как видно, этот признак требует существования производной как минимум до второго порядка в точке .
Наибольшим значением
функции y = f(x) на
промежутке X называют
такое значение
,
что для любого
справедливо
неравенство
.
Наименьшим значением
функции y = f(x) на
промежутке X называют
такое значение
,
что для любого
справедливо
неравенство
.
66. Выпуклые и вогнутые кривые, достаточное условие выпуклости и вогнутости кривой.
Выпуклость и вогнутость
Свойство графика функции у = f (x) (кривой), заключающееся в том, что каждая дуга кривой лежит не выше (не ниже) своей хорды; в первом случае график функции f (x) обращён выпуклостью книзу (вогнутостью кверху) и сама функция называется выпуклой (рис. 1, а), во втором — график обращён вогнутостью книзу (выпуклостью кверху) и функция называется вогнутой (рис. 1, б). Если существуют производные f '(x) и f "(х), то первый случай имеет место при условии, что f "(x) ≥ 0, а второй при f "(x) ≤ 0 (во всех точках рассматриваемого промежутка). Выпуклость (книзу) можно охарактеризовать также тем, что дуга кривой лежит не ниже касательной, в окрестности любой своей точки (рис. 2, a), а вогнутость (книзу) — тем, что дуга кривой лежит не выше касательной (рис. 2, б). Аналогично определяются В. и в. поверхности.
Рис. 1 к ст. Выпуклость и вогнутость.
Рис. 2 к ст. Выпуклость и вогнутость.
Достаточное условие вогнутости ( выпуклости ) функции.
Пусть функция f ( x ) дважды дифференцируема ( имеет вторую производную ) на интервале ( a, b ), тогда:
если f '' ( x ) > 0
для любого x
( a, b ), то функция f ( x )
является вогнутой на интервале
( a, b );
если f '' ( x ) < 0 для любого x ( a, b ), то функция f ( x ) является выпуклой на интервале ( a, b ) .
67. Точки перегиба кривой, достаточное условие существование точки перегиба.
Точка
называется точкой
перегиба графика функции y = f(x),
если в данной точке существует касательная
к графику функции (она может быть
параллельна оси Оу) и существует
такая окрестность точки
,
в пределах которой слева и справа от
точки М график функции имеет
разные направления выпуклости.
Первое достаточное условие перегиба графика функции: Пусть функция y = f(x) непрерывна в точке , имеет в ней касательную (можно вертикальную) и эта функция имеет вторую производную в некоторой окрестности точки . Тогда, если в пределах этой окрестности слева и справа от , вторая производная имеет разные знаки, то является точкой перегиба графика функции.
Второе достаточное
условие перегиба графика функции:
Если
,
а
,
тогда
является
абсциссой точки перегиба графика
функции y= f(x).
Третье достаточное
условие перегиба графика функции.
Пусть
,
а
,
тогда если n – четное число,
то
является
абсциссой точки перегиба графика
функции y = f(x).