- •Министерство аграрной политики и продовольствия украины
- •Государственное агентство рыбного хозяйства украины
- •Керченский государственный морской технологический университет
- •Управление судном
- •1. Устройство судна
- •Классификация судов.
- •Спортивные суда
- •Геометрия судового корпуса
- •Крейсерская (у судов с большой скоростью и несколькими винтами).
- •Главные размерения судна и коэффициенты полноты формы корпуса судна.
- •1.4.Судовая архитектура.
- •1.4.1 Наименования отдельных элементов корпуса судна.
- •1.4.2.Архитектурные типы судов.
- •2. Такелаж морских судов
- •Шлюп-тали – многошкивные (пяти или шестишкивные) тали для подъема шлюпок.
- •Судовые устройства.
- •3.1 Якорное устройство
- •Швартовое устройство.
- •3.3. Буксирное устройство
- •Грузовое устройство
- •3,4,1 Люковые закрытия
- •Рулевое устройство.
- •3.6 Средства улучшения маневренных характеристик судна
- •3.7. Спасательные устройства.
- •4. Морская сигнализация.
- •5.Сведения о судне, как объекте управления
- •5.1 Основные части управляемой системы.
- •Основные характеристики средств управления.
- •Действие руля и гидродинамические силы,
- •5.4 Силы возникающие от работы винта.
- •5.5 Силы действующие на судно от работы винта
- •Действие винта при переходе с переднего хода на задний
- •6. Маневренные элементы судна.
- •6.1. Общие сведения об инерционно-тормозных свойствах судна
- •После разделения переменных
- •6.2 Движение судна под влиянием переложенного руля.
- •Vуст — установившаяся линейная скорость судна, м/с.
- •6.3 Судовая информация о маневренных элементах судна
- •Плавания судов в условиях ветра
- •7.1 Аэродинамическая сила и ее момент.
- •7.2 Гидродинамическая сила и ее момент.
- •7.3 Маневрирование в условиях ветра
- •7.4. Ветровой дрейф
- •9.5 Влияние архитектуры корпуса и надстроек, размеров руля и места его установки на управляемость судна.
- •Якорные операции.
- •Обеспечение безопасной якорной стоянки.
- •Силы действующие на судно при стоянки на якоре
- •Маневрирование при постановке судна на якорь или бочку
- •10.4 Постановка на якорь передним ходом.
- •Поведение судна на якоре
- •Стоянка на якоре
- •8.5 Съемка с якоря (якорей)
- •9. Швартовые операции
- •9.1 Основные сведения о швартовых операциях.
- •9,2 Маневрирование одновинтовых судов при швартовых операциях.
- •9.3 Выполнение швартовых операций.
- •9.4 Швартовка с помощью буксиров. Способы использования буксиров
- •Варианты швартовок с использованием буксиров
- •9.5 Особые случаи швартовки.
- •10. Особенности управления судном в узкости и на мелководье
- •10.1. Влияние мелководья на движущееся судно.
- •10.2. Скоростное проседание судна.
- •Формула а.П.Ковалева
- •10.3.. Влияние мелководья на скорость движения судна.
- •10.4. Управляемость и инерционные характеристики судна на мелководье и в узкости
- •Особенности поведения судна в каналах и реках.
- •Взаимодействие судов при обгоне схематически выглядит так:
- •Взаимодействие судов со стенками каналов при встречном расхождении схематично выглядит следующим образом:
- •Взаимодействие судов между собой и стенками канала при обгоне схематически выглядит так:
- •Особенности плавания и маневрирования в узкости
- •10.6 Расчет безопасных параметров движения судна при прохождении мелководья
- •10.6.1. Расчет проходной осадки судна
- •10.6.2. Навигационный запас
- •10.6.3. Волновой запас.
- •10.6.4. Увеличение осадки от крена
- •10.6.5. Изменение осадки при изменении плотности воды
- •10.7. Расчет безопасной скорости
- •10.8. Возникновение спутной волны
- •10.9. Определение ограничивающих изобат
- •Проведение буксировочных операций.
- •11.1. Теоретические основы морской буксировки
- •11.2. Виды морских буксировок. Выполнение требований морской практики для обеспечения безопасности.
- •11.3 Виды буксирных линий. Способы подачи и крепления буксирных канатов.
- •11.4 Расчеты скорости буксировки и элементов буксирной линии.
- •11.5 Особенности управления судном при буксировке.
- •12. Операции по снятия судна с мели.
- •12.1 Причины посадки судна на мель. Силы возникающие при посадки судна на мель.
- •12.2. Действие экипажа судна, севшего на мель.
- •12.3 Расчет усилий, необходимых для снятия судна с мели
- •12.4 Способы снятия судна с мели собственными силами и с посторонней помощью.
- •13. Плавание судов в штормовых условиях.
- •13.1 Подготовка к плаванию в штормовую погоду
- •13.2. Влияние штормовых условий на мореходные качества судна
- •14.3. Влияние ветра и волнения на циркуляцию и инерционно-тормозные характеристики судна
- •13.4. Универсальные штормовые диаграммы ю. В. Ремеза
- •13.5 Способы штормования судов и их особенности
- •14. Грузовые операции в море
- •14.1. Грузовые операции на рейде.
- •Крепление плавсредств у борта судна.
- •14.3. Передача грузов и пересадка людей в море
- •15. Плавание во льдах.
- •15.1 Характеристика льдов
- •15.2 Подготовка судна к плаванию во льдах.
- •15.3 Маневрирование во льдах.
- •15.4 Плавание во льдах под проводкой ледокола.
- •16 Маневрирование и оказание помощи человеку, упавшему за борт.
6.2 Движение судна под влиянием переложенного руля.
Процесс поворота судна с переложенным рулем называется циркуляцией.
Траектория, описываемая судном под влиянием переложенного на определенный угол руля, характеризуется радиусом циркуляция RЦ. Поскольку при прямолинейном движении Rц= ∞, то очевидно, что после перекладки руля радиус Rц начинает уменьшаться. После окончания переходного процесса траектория судна по форме приближается к окружности, т. е. радиус приобретает установившееся значение Rц = RУСТ, так как линейная и угловая скорости, отношением которых определяется значение радиуса, становятся приблизительно постоянными.
Для сопоставимости поворотливости различных судов радиус циркуляции выражают в безразмерном виде
(6.27)
где
—
относительный
радиус;
L —длина судна.
Величина, обратная радиусу, называется кривизной. Ее также удобно выражать в безразмерном виде
(6.28)
где
—
относительная
кривизна траектории или безразмерная
угловая скорость;
ωУСТ— установившаяся угловая скорость, рад/с;
Vуст — установившаяся линейная скорость судна, м/с.
За начало циркуляции принимается момент начала перекладки руля.
Циркуляция характеризуется линейной и угловой скоростями, радиусом кривизны и углом дрейфа. Эти характеристики не остаются постоянными. Процесс циркуляции принято делить на три периода.
Первый период — маневренный, продолжается в течение времени перекладки руля.
Второй период — эволюционный, начинается с момента окончания перекладки руля и заканчивается, когда характеристики циркуляции примут установившиеся значения.
Третий период — установившийся, начинается с момента окончания второго периода и продолжается до тех пор, пока руль остается в переложен-ном положении.
Переложенный на угол δР руль, как и всякое крыло, развивает подъемную силу — боковую силу руля Рpy.
Для получения наглядного представления о воздействии силы на корпус судна приложим в его ЦТ две силы, равные по модулю силе Рру и направленные в противоположные стороны, как это показано на рис. 6.3. Эти две силы взаимно компенсируются, т. е. не оказывают влияния на корпус судна, но их совместное рассмотрение с боковой силой руля Рру позволяет понять, что корпус судна одновременно испытывает поперечную силу Рру, приложенную в центре тяжести G, и момент боковой силы руля Мp относительно вертикальной оси Z, проходящей через ЦТ.
В первый период после начала циркуляции под влиянием поперечной силы РрУ ЦТ судна приобретает боковое перемещение во внешнюю сторону циркуляции — обратное смещение. Возникает угол дрейфа α, а значит и поперечная гидродинамическая сила на корпусе Rу, направленная внутрь циркуляции. Ее точка приложения в соответствии со свойствами крыла смещена в нос от ЦБС, положение которого при отсутствии большого дифферента можно считать совпадающим с ЦТ судна. Момент силы Ry—MR в этом первоначальном периоде циркуляции имеет тот же знак, что и момент руля Мp, поэтому появляется и начинает быстро возрастать угловая скорость.
В дальнейшем под влиянием поперечной силы Rу траектория ЦТ начинает постепенно искривляться в сторону перекладки руля, т. е. радиус циркуляции, который в начале стремился к бесконечности, начинает уменьшаться.
Рис. 6.5. Силы, действующие на судно с переложенным рулем в начальной стадии циркуляции.
При движении ЦТ по криволинейной траектории с радиусом RG, каждая точка по длине судна описывает относительно общего центра циркуляции «О» свою траекторию, радиус кривизны которой отличается от RG (рис. 64). При этом каждая такая точка имеет свой угол дрейфа, значение которого возрастает по мере удаления в сторону кормы. В нос от ЦТ углы дрейфа соответственно уменьшаются.
Если из центра циркуляции «О» опустить перпендикуляр на ДП, то в полученной точке ПП угол дрейфа равен нулю. Эта точка носит название центра вращения или полюса поворота (ПП).
Полюс поворота при циркуляции для большинства судов располагается вблизи носовой оконечности на расстоянии примерно 0,4 длины судна от ЦТ, принимаемого на мидель-шпангоуте.
Угол дрейфа ЦТ судна на циркуляции:
(6.29)
где ℓПП — расстояние ПП от центра тяжести.
Для произвольной по длине судна точки а угол дрейфа:
(6.30)
где ℓa —расстояние точки а от ЦТ (в нос знак «+», в корму «—»).
На небольшом участке корпуса от ПП до носового перпендикуляра поток воды набегает на корпус со стороны внутреннего борта, поэтому углы дрейфа на этом участке имеют знак, противоположный углам дрейфа на участке от ПП до кормового перпендикуляра, на котором поток воды набегает со стороны внешнего борта.
Рис.6.6.
Силы, действующие на судно с переложенным
рулем на развитой стадии циркуляции.
Под углом дрейфа на циркуляции подразумевается угол дрейфа ЦТ судна.
На судах, имеющих крутую циркуляцию, угол дрейфа может достигать 20° и более. Как уже отмечалось поперечная сила пропорциональна углу атаки, а так как углы дрейфа возрастают по длине корпуса в сторону кормы, то точка приложения поперечной гидродинамической силы Ry, т. е. равнодействующей элементарных поперечных сил, распределенных по корпусу, по мере искривления траектории смещается в сторону кормы, а момент силы Mr, постепенно уменьшаясь, в конце концов меняет знак и начинает действовать противоположно моменту руля Мp.
Рост угловой скорости при этом замедляется, когда моменты MР и MR становятся равными по абсолютной величине, угловая скорость стремится к установившемуся значению ωУСТ
При движении по криволинейной траектории возникает центробежная сила Рц, приложенная к ЦТ судна и направленная по радиусу циркуляции во внешнюю сторону. Благодаря наличию угла дрейфа эта сила имеет продольную РЦX и поперечную РЦY составляющие.
Из-за лобового сопротивления переложенного руля (сила Ррх) и некоторого увеличения сопротивления корпуса при движении с углом дрейфа линейная скорость V постепенно уменьшается, стремясь к некоторому установившемуся значению Vуст.
Чем лучше поворотливость судна, т. е. чем большую кривизну имеет траектория, тем больше снижается скорость на циркуляции. В среднем на крупнотоннажных морских судах во время циркуляции с рулем на борту при повороте на 90° скорость снижается приблизительно на треть, а при повороте на 180° — вдвое.
При небольших углах перекладки руля снижение скорости на циркуляции невелико.
Наиболее типичная траектория судна на циркуляции с рулем, переложенным на борт, показана на рис.7.6
Геометрически траектория характеризуется следующими элементами циркуляции:
выдвиг ℓ1 — расстояние, на которое смещается ЦТ судна в направлении первоначального курса от начальной точки циркуляции до точки, соответствующей изменению курса на 90°;
прямое смещение ℓ2 — расстояние от линии первоначального курса по нормали до ЦТ судна к моменту изменения курса на 90°;
обратное смещение ℓ3 — максимальное смещение ЦТ судна от линии первоначального курса в сторону, обратную направлению поворота, происходящее в начале циркуляции под влиянием боковой силы руля, вызывающей дрейф судна (обратное смещение обычно не превышает ширину судна, а на некоторых судах не наблюдается вовсе);
тактический диаметр циркуляции DT — расстояние между положениями ДП судна до начала поворота и в момент изменения курса на 180°;
Рис.6.7. Траектория циркуляции судна с рулём на борту
диаметр установившейся циркуляции DУСТ – расстояние между положением ДП судна на двух противоположных курсах, при установившейся циркуляции.
Условно можно считать, что после поворота на 1800 от начального курса движение приобретает установившейся характер, а траектория принимает форму, близкую к окружности.
