Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Obschaya_i_neorganicheskaya_khimia_Lesnikovich.doc
Скачиваний:
5
Добавлен:
01.04.2025
Размер:
3.18 Mб
Скачать

Важнейшие восстановители

1. Простые вещества – все металлы и некоторые неметаллы, например Н2, С, Si, P4 и др.

2. Водородные соединения щелочных и щелочноземельных металлов, а также водородные соединения некоторых неметаллов, например: HI, HBr, H2O2, H2S, H2Se, H2Te, NH3, PH3, AsH3, SbH3, SiH4, SnH4.

3. Оксиды элементов, атомы которых находятся в промежуточной степени окисления. Это оксиды ряда неметаллов – СО, SO2, NO, P2O3, а также низшие оксиды некоторых р- и d-элементов – SnO, FeO, СrO, VO и соответствующие им соли, например SnCl2, FeSO4 и др.

4. Некоторые кислородсодержащие кислоты и их соли, в состав которых входят атомы элементов в промежуточных степенях окисления, например H2SO3, H3PO2, H3PO3, и их соли, а также тиосульфаты (Na2S2O3), дисульфиты (Na2S2O5), дитиониты (Na2S2O4), нитриты.

5. Некоторые органические вещества, например спирты, альдегиды, некоторые карбоновые кислоты (H─COOH, HOOC─COOH), углеводы (С6H12O6).

Важнейшие окислители:

1. Простые вещества – галогены, озон, кислород, сера.

2. Оксиды некоторых р- и d-элементов в высоких степенях окисления, например Cl2O7, ClO2, I2O5, SO3, SeO3, SeO2, N2O5, NO2, PbO2, Mn2O7, MnO2, CrO3, V2O5.

3. Кислородсодержащие кислоты некоторых р- и d-элементов в высоких степенях окисления, например HClO3, H5IO6, HIO3, HBrO4, HBrO3, H2SO4, H2SeO4, H2SeO3, HNO3, H2CrO4, H2Cr2O7, HMnO4, и соли этих кислот. К окислителям относятся также кислородсодержащие кислоты галогенов, в которых они проявляют и более низкие степени окисления, например HClO, HClO2, а также их соли;

4. Пероксид водорода Н2О2, пероксиды щелочных и щелочноземельных металлов (Na2O2, BaO2).

Ниже приведена классификация окислительно-восстановительных реакций.

Овр межмолекулярного типа

Если а. ч.-восстановители и а. ч.-окислители содержатся в разных веществах, то ОВР относится к реакциям межмолекулярного типа. Например, в реакции

а. ч.-окислители ( ) и а. ч.-восстановители ( ) нахо­дятся в разных веществах.

Когда в ОВР межмолекулярного типа окислителями и восстановителями являются а. ч. одного и того же элемента, такие ОВР относятся к реакциям конпропорционирования или конмутации. Например, в реакции

окислителями и восстановителями являются а. ч. одного элемента – азота.

Овр внутримолекулярного типа

Если а. ч.-восстановители и а. ч.-окислители содержатся в одном и том же исходном веществе, то ОВР относится к реакциям внутримолекулярного типа, например:

В данной реакции а. ч.-окислители ( ) и а. ч.-восстановители ( ) со­держатся в одном веществе.

Когда в реакциях внутримолекулярного типа окислителями и восстановителями являются а. ч. одного и того же элемента, такие ОВР относятся к реакциям диспропорционирования или дисмутации. Например, в реакции

окислителями и восстановителями являются а. ч. одного элемента – хлора.

Расстановка коэффициентов в уравнениях овр методом электронного баланса

Обратите внимание: в уравнениях ОВР межмолекулярного типа расстановка коэффициентов проводится слева направо (пример 9.2), а в уравнениях ОВР внутримолекулярного типа справа налево (пример 9.3).

Пример 1.9.2. Расставьте коэффициенты методом электронного баланса в уравнении ОВР:

H2 2 + K2 2O7 + H2SO4 2 + 2(SO4)3 + K2SO4 + H2O.

Решение.

1. Определим, у а. ч. каких элементов и как изменились степени окисления? В данном случае это – кислород и хром. А. ч. кислорода изменили степень окисления от –1 до 0, а хрома – от +6 до +3.

2. Определим тип ОВР и направление расстановки коэффициентов. Поскольку а. ч. , изменившие степени окисления, содержатся в разных веществах, то данная ОВР относится к реакциям межмолекулярного типа. В таком случае расстановку коэффициентов проводим «слева направо». Это значит, что в электронных уравнениях число атомных частиц равно их числу в формулах соответствующих исходных веществ.

3. Запишем электронные уравнения процессов окисления и восстановления, найдем наименьшее общее кратное чисел отданных и принятых электронов и составим схему электронного баланса:

2 – 2ē → 2

×6

×3

– восстановитель, окисляется;

2 + 6ē → 2

×2

×1

– окислитель, восстанавливается.

4. Найдем числа а. ч., изменивших степени окисления. Для этого каждое из уравнений электронного баланса умножим на соответствующий множитель (первое уравнение – на 3, второе – на 1). Получим: число а. ч. кислорода, изменивших степень окисления, равно 2 · 3 = 6, а число а. ч. хрома равно 2 · 1 = 2.

5. Расставим коэффициенты перед формулами веществ.

а) уравняем числа а. ч. хрома, поставив перед формулами K2Cr2O7 и Cr2(SO4)3 коэффициенты 1;

б) уравняем числа а. ч. кислорода, изменивших степень окисления, поставив перед формулами O2 и H2O2 коэффициенты 3.

в) уравняем числа а. ч. калия, поставив перед формулой K2SO4 коэффициент 1;

г) уравняем числа кислотных остатков , поставив перед формулой серной кислоты коэффициент 4;

д) уравняем числа атомов водорода, поставив перед формулой воды коэффициент 7;

6. Проверим, одинаковы ли числа а. ч. кислорода в левой и правой частях уравнения:

3H2O2 + K2Cr2O7 + 4H2SO4 = 3O2 + Cr2(SO4)3 + K2SO4 + 7H2O.

Пример 1.9.3. Методом электронного баланса расставьте коэффициенты в уравнении реакции:

3)3 2O3 + O2 + 2.

Решение.

1. Определим степени окисления а. ч. до и после реакции и найдем элементы, у а. ч. которых изменились степени окисления. В данном случае это – азот и кислород. А. ч. азота изменили степень окисления от +5 до +4, а кислорода – от –2 до 0.

2. Определим тип ОВР и направление расстановки коэффициентов. Поскольку а. ч. и , изменившие степени окисления, содержатся в одном и том же веществе, данная ОВР относится к реакциям внутримолекулярного типа. В таком случае расстановку коэффициентов проводим «справа налево». Это значит, что в электронных уравнениях число атомных частиц равно их числу в формулах продуктов реакции.

3. Запишем электронные уравнения процессов окисления и восстановления, найдем наименьшее общее кратное чисел отданных и принятых электронов и составляем схему электронного баланса:

2 – 4ē → 2

×1

×3

+ 1ē →

×4

×12.

4. Найдем числа а. ч., изменивших степени окисления. Для этого каждое из уравнений электронного баланса умножим на соответствующий множитель (первое уравнение – на 1, второе – на 4). Получим, что число а. ч. кислорода, изменивших степень окисления, равно 2 · 1 = 2, а соответствующее число а. ч. азота равно 1 · 4 = 4. Но поскольку в формульной единице Fe(NO3)3 содержится 3 а. ч. азота, перед данной формулой придется поставить дробный коэффициент 4/3, что не совсем удобно. Поэтому для избавления от дробного коэффициента найденные числа а. ч. азота и кислорода умножим на 3. Получается, что степени окисления изменились у 6 а. ч. кислорода и у 12 а. ч. азота.

5. Расставим коэффициенты перед формулами веществ.

а) уравняем числа а. ч. азота, поставив перед формулой NO2 коэффициент 12, а перед формулой Fe(NO3)3 – коэффициент 4;

б) уравняем числа а. ч. кислорода, изменивших степень окисления, поставив перед формулой O2 коэффициент 3;

в) уравняем числа а. ч. железа, поставив перед формулой Fe2O3 коэффициент 2.

6. Проверим, одинаковы ли числа атомов кислорода в левой и правой частях уравнения:

4Fe(NO3)3 = 2Fe2O3 + 12NO2 + 3O2 .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]