
- •Кравцов ю.В., доцент, канд. Техн. Наук
- •Конспект лекций
- •Электромагнитная совместимость в электроэнергетических системах
- •Содержание
- •Электромагнитной совместимости
- •Общие понятия
- •Обеспечение электромагнитной совместимости
- •Характеристики и параметры технических средств,
- •Электромагнитные помехи
- •Измерительное оборудование и аппаратура
- •2 Электромагнитная обстановка на объектах электроэнергетики
- •2.1 Источники электромагнитных воздействий
- •2.1 Источники электромагнитных воздействий
- •2.2. Статический преобразователь как источник гармоник и другие источники гармоник
- •2.3 Влияние гармоник на системы электроснабжения
- •2.4 Вращающиеся машины
- •2.5 Статическое оборудование
- •2.6 Устройства релейной защиты в энергосистемах
- •2.7 Оборудование потребителей
- •2.8 Влияние гармоник на измерение мощности и энергии
- •3. Влияние электромагнитного воздействия
- •4.2 Влияния линий электропередачи на линии связи и рекомендации по электромагнитной совместимости
- •4.2.2 Мешающие влияния
- •5 Источники помех. Чувствительные к помехам элементы.
- •5.1 Классификация источников помех
- •5.2 Источники узкополосных помех
- •5.2.1 Передатчики связи
- •5.2.2 Генераторы высокой частоты
- •5.2.3 Радиоприемники. Приборы с кинескопами. Вычислительные системы. Коммутационные устройства
- •5.2.4 Влияние на сеть
- •5.2.5 Влияние линий электроснабжения
- •5.3. Источники широкополосных импульсных помех
- •5.3.1 Исходный уровень помех в городах
- •5.3.2 Автомобильные устройства зажигания
- •5.3.3 Газоразрядные лампы
- •5.3.4 Коллекторные двигатели
- •5.3.5 Воздушные линии высокого напряжения
- •5.4 Источники широкополосных переходных помех
- •5.4.1 Разряды статического электричества
- •5.4.2 Коммутация тока в индуктивных цепях
- •5.4.3 Переходные процессы в сетях низкого напряжения
- •5.4.4 Переходные процессы в сетях высокого напряжения
- •5.4.5 Переходные процессы в испытательных устройствах высокого напряжения и электрофизической аппаратуре
- •5.4.6 Электромагнитный импульс молнии
- •5.4.7 Электромагнитный импульс ядерного взрыва
- •6.1 Логарифмические относительные характеристики. Уровни помех
- •6.2 Степень передачи. Помехоподавление
- •6.3 Основные типы и возможные диапазоны значений электромагнитных помех
- •6.3.1 Узкополосные и широкополосные процессы
- •6.3.2 Противофазные и синфазные помехи
- •6.4 Земля и масса
- •6.5 Способы описания и основные параметры помех
- •6.5.1 Описание электромагнитых влияний в частотной и временной областях
- •6.5.2 Представление периодических функций времени в частотной области. Ряд Фурье
- •6.5.3. Представление непериодических функций времени в частотной области. Интеграл Фурье.
- •6.5.4. Возможные диапазоны значений электромагнитных помех
- •6.5.5. Спектры некоторых периодических и импульсных процессов
- •6.5.6. Учет путей передачи и приемников электромагнитных помех
- •7 Фильтры
- •7.1 Ограничение уровней гармоник напряжений и токов
- •7.1 Ограничение уровней гармоник напряжений и токов
- •7.2 Схемы и параметры фильтров
- •8.2. Защитные элементы
- •10.2. Материалы для изготовления экранов
- •10.3 Экранирование приборов и помещений
- •10.4 Экраны кабелей
- •11 Разделительные элементы
- •12.1 Общие сведения об измерении электромагнитного воздействия
- •12.2 Электромагнитные поля радиочастотного диапазона
- •12.3. Разряды статического электричества
- •12.4 Магнитные поля промышленной частоты
- •12.5 Помехи, связанные с возмущениями в цепях питания низкого напряжения
- •13.1.1 Электромагнитная обстановка на рабочих местах и в быту
- •13.1.2 Механизмы воздействия электрических и магнитных полей на живые организмы
- •13.2 Нормирование безопасных для человека напряженностей электрических и магнитных полей
- •13.2.1. Нормативная база за рубежом и в рф
- •13.2.2. Нормирование условий работы персонала и проживания людей в зоне влияния пс и вл свн
- •13.3 Экологическое влияние коронного разряда
- •13.3.1 Радиопомехи
- •13.3.2. Акустический шум
- •14 Закон рф об электромагнитной совместимости
- •14.1 Общие сведения о Федеральном законе
- •14.2 Основные направления государственного регулирования в области обеспечения электромагнитной совместимости технических средств
- •14.3 Общие требования в области обеспечения электромагнитной совместимости технических средств
- •14.4 Обязательная сертификация технических средств
- •14.5 Обучение и переподготовка кадров
- •14.6 Обязанности физических и юридических лиц, использующих технические средства и потребляющих электрическую энергию
- •15 Качество электроэнергии
- •15.1 Область применения гост 13109-97
- •15.2 Показатели качества электрической энергии
- •15.3 Нормы качества электроэнергии
- •15.3.1 Отклонение напряжения
- •15.3.2 Колебания напряжения
- •15.3.3 Несинусоидальность напряжения
- •15.3.4 Несимметрия напряжений
- •15.3.5 Отклонение частоты
- •15.3.6 Провал напряжения
- •15.3.7 Импульс напряжения
- •15.4 Требования к погрешности измерений показателей
- •15.5 Требования к интервалам усреднения результатов измерений показателей качества электроэнергии
- •Список литературы
4.2 Влияния линий электропередачи на линии связи и рекомендации по электромагнитной совместимости
Линии электропередачи (ВЛ) оказывают на линии проводной связи влияния, которые обусловлены различными механизмами взаимодействия и при определенном взаимном расположении между линиями электропередачи и связи могут достигать значения, представляющие опасность для обслуживающего персонала и превышающие электрическую прочность кабеля связи и вводных устройств аппаратуры уплотнения.
Влияние за счет индуктивной связи обусловлено прохождением части или всего переменного тока ВЛ по цепи провод-земля. Это может иметь место, например, при несимметричной нагрузке трехфазных ВЛ, при работе ВЛ по системе два провода-земля, при однофазных или двухфазных замыканиях ВЛ на землю. Магнитному влиянию подвержены все линии проводной связи, как воздушные, так и кабельные.
Влияние за счет емкостной связи обусловлено наличием вокруг проводной ВЛ электрического поля. Провода линий связи (ЛС), находящиеся в зоне действия поля, оказываются под воздействием потенциала этого поля. Электрическому влиянию подвержены провода воздушных линий связи, а также кабельные линии связи, выполненные кабелем без металлических оболочек, подвешенным на опорах или стойках.
Влияние через гальваническую связь (полное сопротивление связи) обусловлено протеканием в земле силовых токов. Гальваническому влиянию подвержены заземленные металлические оболочки кабелей и цепи воздушных и кабельных ЛС, использующих землю в качестве обратного провода.
Расчет продольных ЭДС в проводах связи при аварийном режиме ВЛ с заземленной нейтралью производят для наиболее неблагоприятного случая положения точек короткого замыкания, изменяя места их расположения по длине сближения.
При расчете продольной ЭДС рассматривают короткое замыкание ВЛ из графика в самой неблагоприятной точке, т.е. случай, когда влияние будет наибольшим. Обычно это соответствует короткому замыканию в начале или конце сближения.
Экранирование. При расчетах уровней влияния ВЛ и ЛС необходимо учитывать экранирующее действие различных металлических коммуникаций, расположенных в зоне влияния и соединенных с землей. К таким коммуникациям могут быть отнесены железнодорожные рельсы, трубопроводы, оболочки силовых кабелей и кабелей связи, тоннели и коллекторы, грозозащитные тросы ВЛ и т.д.
Экранирующее действие зависит от собственного сопротивления экрана, расположения его относительно ВЛ и ЛС, условий заземления, удельного сопротивления земли, а для экранов с магнитными материалами - также от продольной ЭДС, наводимой в экране влияющим током.
Мероприятия по защите от опасного влияния. Если по техническим и экономическим или эксплуатационным соображениям оказывается невозможным или нецелесообразным выбрать трассу проектируемой ВЛ или ЛС таким образом, чтобы индуктируемые в проводах ЛС напряжения не превышали допустимых значений, применяют специальные меры защиты.
К мерам защиты на ВЛ относятся:
- применение хорошо проводящих заземленных грозозащитных тросов, а также специальных проводников, проложенных в земле;
- частичное разземление нейтралей трансформаторов высоковольтной сети, обеспечивающее снижение токов короткого замыкания ВЛ;
- применение на ВЛ с изолированной нейтралью аппаратуры для контроля состояния изоляции фазовых проводов по отношению к земле или перекоса фазных напряжений, обеспечивающей скорейшее обнаружение и устранение электрического влияния ВЛ на ЛС;
- частичное или полное каблирование ВЛ на городских участках;
- использование быстродействующей защиты, ускоряющей отключение поврежденной ВЛ с заземленной нейтралью.
К специальным мерам защиты на ЛС относятся:
- включение специальных разрядников между каждым проводом и землей. Для воздушных ЛС, как правило, общее количество разрядников на 100 км ЛС не должно превышать дли уплотненной цепи 15 шт., для неуплотненной цепи - 25 шт. Допустимое количество разрядников ограничивается эксплуатационными соображениями и поэтому по соглашению между заинтересованными сторонами допускается в исключительных случаях установка большего количества разрядников. Защита разрядниками цепей полуавтоматической блокировки и цепей фидерных линий проводного вещания не допускается;
- включение разделительных трансформаторов в телефонные цепи без дистанционного питания и разделительных трансформаторов с защитными контурами при наличии дистанционного питания;
- включение дренажных катушек или дросселей с заземленной средней точкой в телефонные цепи без дистанционного питания и дренажных катушек с резонансными заземляющими контурами в телефонные цепи с дистанционным питанием;
- частичное или полное каблирование ЛС;
- замена железобетонных или металлических опор ЛС на деревянные (в том числе с железобетонными приставками) в пределах усилительного участка ЛС, на котором имеются опасные сближения с ВЛ;
- по соглашению заинтересованных сторон введение высоковольтного режима обслуживания ЛС;
- включение редукционных трансформаторов;
- замена кабеля связи на кабель с повышенным защитным действием и др.
Защита цепей ЛС с помощью редукционных трансформаторов.
Одной из мер защиты линий связи от опасного и мешающего влияния линий высокого напряжения являются применение редукционных трансформаторов (РТ).
Применение редукционных трансформаторов в ряде случаев дает значительный экономический эффект по сравнению с другими мерами защиты.
Редукционный трансформатор представляет собой два О-образных магнитопровода из электротехнической стали Э-320 (толщина пластин 0,35 мм), на которых размещена обмотка.
Роль первичной обмотки трансформатора выполняет оболочка (внешний проводник) кабеля, роль вторичной обмотки — жилы (внутренний проводник) кабеля. На магнитопроводе трансформатора размещены одновременно две одинаковые обмотки, выполненные кабелем в целях защиты с помощью одного трансформатора сразу двух кабелей при двухкабельной системе связи. При однокабельной системе связи обмотки этого трансформатора включаются последовательно.
Трансформатор размещен в стальном герметичном корпусе, покрытом антикоррозийной краской. Для ввода защищаемого кабеля в корпусе предусмотрены специальные отверстия.
Принцип действия РТ заключается в следующем.
Первичная обмотка включается в разрез металлических покровов кабеля, которые заземляются по концам защищаемого участка, вторичная обмотка — в разрез жил кабеля. При протекании тока в цепи металлические покровы — земля и, следовательно, в первичной обмотке во вторичной обмотке индуцируется ЭДС, направление которой противоположно ЭДС, индуцированной в жилах кабеля от влияния линий высокого напряжения. Таким образом, суммарная ЭДС в жилах кабеля уменьшается.