
- •1. Оценка динамической устойчивости электрической системы электроснабжения методом площадей.
- •2. Мостиковые схемы. Влияние графика суточных нагрузок на положение выключателя.
- •2Б. Системы оперативного тока, используемого на подстанциях, их достоинства и недостатки. (Савин)
- •3. Взаимная связь режимов напряжения и реактивной мощности в электрических сетях.
- •4. Построить векторную диаграмму напряжений для сетей до 110 кВ, расчет режима по данным начала сети.
- •5. Назначение и принцип действия авр. Требования к схеме авр. Пусковые органы схемы авр и расчет параметров их срабатывания. Схема авр на постоянном оперативном токе.
- •Пусковые органы и параметры авр
- •6. Понятие о статической устойчивости электроэнергетической системы. Запас устойчивости.
- •7. Методика расчета электрических нагрузок по методу упорядоченных диаграмм.
- •8. Способы ограничения пусковых токов асинхронных короткозамкнутых и синхронных двигателей.
- •9. Ударный ток короткого замыкания. Расчет ударного тока при трехфазном кз. Ударный коэффициент , пределы его изменения
- •10. Направленная максимальная токовая защита. Область применения. Расчет параметров срабатывания. Преимущества и недостатки. Схема мтз на переменном оперативном токе.
- •Мертвая зона токовой направленной защиты.
- •Схемы включения реле направления мощности
- •11. Реакторы. Устройство, назначение и основные параметры. Вольт-амперная характеристика.
- •11Б. Устройство, область применения масляного выключателя с малым объемом масла. (Савин)
- •12. Переходные и сверхпереходные эдс и сопротивления синхронных машин.
- •13. Сопротивления прямой, обратной и нулевой последовательности воздушных и кабельных линий.
- •14. Собственные нужды обслуживаемых и необслуживаемых подстанций. Состав собственных нужд. Схемы подключения трансформаторов собственных нужд.
- •14Б. Состав собственных нужд тепловых электростанций твердого топлива.(Савин)
- •15. Максимальная токовая защита. Назначение. Область применения. Выбор параметров. Назначение. Схема мтз на переменном оперативном токе с использованием реле рт-40, рвм – 12, рп – 341.
- •16. В каких тормозных режимах может работать асинхронный двигатель? Как эти режимы могут быть получены. Механические характеристики.
- •16Б. От чего зависят потери энергии в переходных режимах электропривода? Способы уменьшения этих потерь. (Савин)
- •4.4. Потери энергии в переходных процессах.
- •17. Периодическая и апериодическая составляющие тока короткого замыкания.
- •18. Защита трансформаторов малой и средней мощности 10/0,4 кВ
- •19. Почему при частотном регулировании скорости асинхронного двигателя необходимо одновременное изменение частоты и напряжения? в каком соотношении измеряются эти два параметра?
- •19Б. Принципы работы преобразователей частоты с промежуточным звеном постоянного тока для управления асинхронными двигателями. Как в нём регулируется частота и напряжение? (Савин)
- •20. Защита электрических сетей до 1000 в плавкими предохранителями и расцепителями автоматических выключателей. Преимущества и недостатки. Чувствительность и селективность.
- •21. Влияние арв (автоматическое регулирование возбуждения) синхронных генераторов на статическую устойчивость электрической системы
- •22. Продольная и поперечная дифференциальная защита линий. Область применения. Зона защиты. Преимущества и недостатки.
- •Продольная дифференциальная защита
- •23. Какими параметрами характеризуется повторно-кратковременный режим работы электродвигателя? Как осуществляется определение мощности двигателя для этого режима?
- •25. Показатели качества напряжения и способы их поддержания в заданных пределах.
- •Импульсное перенапряжение Резкое повышение напряжения длительностью менее 10 миллисекунд.
- •26. Какими способами можно регулировать частоту вращения асинхронных короткозамкнутых двигателей. Нарисуйте механические характеристики для этих способов.
- •26Б. Нагрузочная диаграмма двигателя и её построение. Классификация режимов работы двигателей по нагреву.(Савин)
- •27. Газовая защита трансформатора. Назначение защиты. Конструкция газового реле.
- •28. Сопротивление нулевой последовательности двухобмоточных трансформаторов
- •29. Способы регулирования напряжения в электрических сетях.
- •30. Основные требования к схемам главных электрических соединений электростанций и подстанций.
- •31. Схема распредустройств с двойной системой шин и обходным устройством. Назначение, особенности использования при выводе выключателя в ремонт.
- •31Б. (По Савину) Состав собственных нужд гидроэлектростанций.
- •32. Чем отличаются потери от падения напряжения и как их определяют?
- •33. Влияние компенсации реактивной мощности на устойчивость узла нагрузки.
- •Влияние компенсации реактивной мощности на устойчивость узла нагрузки.
- •34. Установки диэлектрического нагрева: устройство, расчет мощности, источники питания.
- •35. Применение метода симметричных составляющих для расчета токов и напряжений при коротких замыканиях и обрыве фаз.
- •36. Токовая отсечка без выдержки времени, токовая отсечка с выдержкой времени. Выбор параметров защит, схема защиты на постоянном оперативном токе.
- •37. Сопротивление нулевой последовательности воздушных и кабельных линий электропередачи.
- •38. Компенсация реактивной мощности на предприятиях.
- •39. Электрическое торможение асинхронных двигателей. Механические характеристики.
- •39Б. (По Савину) Тормозные режимы асинхронного двигателя. Схемы включения. Механические характеристики в этих режимах.
- •40. Основные требования, предъявляемые к релейной защите. Виды селективности. Способы повышения чувствительности релейной защиты.
- •3. Быстродействие
- •4. Надежность
- •41. Каким критериям должен удовлетворять правильно выбранный по мощности электродвигатель? Как осуществляется эта проверка по методам эквивалентных величин?
- •42. Особенности расчета токов к.З. В сетях до 1000 в.
- •43. Принцип работы и устройство элегазовых выключателей высокого напряжения (10-35 кВ и 110-500 кВ).
- •43Б. (По Савину) Принцип работы и устройство вакуумных выключателей высокого напряжения.
- •44. Индукционные, канальные и тигельные печи, устройство, расчет активной и полной мощности.
- •45. Система стабилизации скорости электропривода с положительной обратной связью по току якоря.
- •46. Вспомогательные методы определения расчётной нагрузки.
- •47. Карта селективности, её построение и анализ.
- •48. Принцип построения преобразователя частоты.
- •48Б. (По Савину) Почему при частотном регулировании ад необходимо одновременное изменение частоты и напряжения? в каком соотношении должны изменяться эти параметры?
- •49. Понятие о времени использования наибольшей (максимальной) нагрузки и способы его определения.
- •50. Порядок расчета и выбора шин на подстанциях высокого напряжения.
- •51. Назначение и принцип действия апв.
- •52. Системы оперативного тока, используемого на подстанциях, их достоинства и недостатки.
- •53. Анализ динамической устойчивости электроэнергетической системы методом площадей
- •54. Способы ограничения пусковых токов асинхронных короткозамкнутых и синхронных двигателей.
- •54Б. (По Савину) Принцип работы и внешняя характеристика неуправляемого выпрямителя.
- •Внешняя х-ка преобразователя.
- •55. Принцип построения системы регулирования скорости с отрицательной обратной связью по скорости. Какие параметры влияют на величину скорости и жесткости механической характеристики?
- •56. Особенности расчёта однофазной электрической нагрузки.
- •57. Назначение защитных заземлений и нормативы их выполнения.
- •58. Комплексная схема замещения для расчёта однофазного короткого замыкания на землю, вид и обоснования.
- •59. Уравнения и графики электромеханических характеристик двигателя постоянного тока независимого возбуждения.
- •59Б.(По Савину) Уравнения и графики электромеханических характеристик двигателя постоянного тока независимого возбуждения. Построение естественных характеристик по паспортным данным.
- •60. Условия выбора сечения жил кабеля в сетях напряжением выше 1000в.
- •61) Карта селективности, ее построение и анализ.
- •62) Способы регулирования частоты вращения асинхронных двигателей. Схемы включения. Механические характеристики.
- •63) Расчет ударного тока при трехфазном коротком замыкании в системе электроснабжения.
- •64)Понятие падения и потери напряжения.
- •65)Как определяются параметры схемы замещения воздушной линии?
- •66)Совместное действие релейной защиты и схемы апв. Ускорение защиты до апв, ускорение защиты после апв.
- •После апв.
- •67)Вакуумно-дуговые и плазменно-дуговые печи, устройство, источники питания, параметрические источники тока.
- •68)Электромеханические характеристики реверсивного тиристорного привода.- Заменить вопрос на вопрос из другой дисциплины.
- •69)Методика выбора числа и мощности трансформаторов цеховой тп.
- •70)Электрическая дуга постоянного и переменного тока; условия устойчивого и непрерывного горения.
- •71)Микропроцессорная релейная защита. Преимущества и недостатки.
- •72)Как влияют схемы и группы соединений двухобмоточных трансформаторов на трансформацию напряжений прямой , нулевой и обратной последовательностей.
- •73)Принцип работы и внешняя характеристика управляемого тиристорного преобразователя.( Выпрямительный и инверторный режимы работы.)
- •74)Составить схему замещения воздушной линии электропередачи. Как определяются параметры схемы замещения.
- •75)Дифференциальные защиты силового трансформатора. Ток небаланса. Принцип действия насыщающегося трансформатора тока.
- •Дифференциальная токовая отсечка.
- •76)Методы определения расчетных нагрузок в системах электроснабжения.
- •77)Способы ограничения пусковых токов асинхронных короткозамкнутых и синхронных двигателей.
- •78)Схема замещения трехобмоточного трансформатора и определение его параметров
- •79)Сварочные трансформаторы: устройство, вольтамперные характеристики, способы регулирования тока дуги.
- •80) Способы ограничения токов короткого замыкания.
- •81)Методика выбора средств компенсации реактивной мощности
- •Определение мощности компенсирующих устройств в сети напряжением выше 1000в.
- •83)Виды защит силовых трансформаторов. Их назначение. Максимальная токовая защита трансформатора с блокировкой по напряжению.
- •Максимальная токовая защита с комбинированным пуском напряжения.
- •84)Влияние качества электроэнергии на работу сетей и электроприемников.
- •85)Состав собственных нужд тепловых электростанций твердого топлива.
- •86) Схемы с малым числом выключателей. Схемы ру типа многоугольников и дробным числом выключателей на линию. Достоинства и недостатки.
- •87)Понятие об ударном токе короткого замыкания. Ударный коэффициент, пределы его изменения.
2. Мостиковые схемы. Влияние графика суточных нагрузок на положение выключателя.
При неравномерной нагрузке применяется схема1. При равномерной нагрузке применяется схема 2.
В схеме 1 при минимальной нагрузке можно отключить один трансформатор.
2Б. Системы оперативного тока, используемого на подстанциях, их достоинства и недостатки. (Савин)
Оперативным током называется ток питающий цепи дистанционного управления выключателями, оперативные цепи релейной защиты, автоматики, телемеханики и различные виды сигнализации.
Питание оперативных цепей и особенно тех ее элементов от которых зависит отключение поврежденных линий и оборудования должно отличаться особой надежностью. Поэтому главное требование, которому должен отвечать источник оперативного тока, состоит в том, чтобы во время к. з. и при ненормальных режимах в сети напряжение источника оперативного тока и его мощность имели достаточную величину как для действия вспомогательных реле защиты и автоматики, так для надежного отключения и включения соответствующих выключателей.
Для питания оперативных цепей применяются источники постоянного, переменного и выпрямленного тока.
выпрямленный оперативный ток – система питания оперативных цепей переменным током, в которой переменный ток преобразуется в постоянный (выпрямленный) с помощью блоков питания и выпрямительных силовых устройств. В качестве дополнительных источников питания импульсного действия могут использоваться предварительно заряженные конденсаторы; Выпрямленный оперативный постоянный ток применяться на подстанциях: 35/6(10) кВ, 35–220/6(10) кВ и 110–220/35/6(10) кВ. Источник выпрямленного оперативного тока состоит из батареи конденсаторов и блока питания UGV. Батарея конденсаторов используется в качестве кратковременного источника оперативного тока, заряженного в нормальном режиме работы. Заряжается конденсаторная батарея с помощью блока питания. В случае сильного снижения напряжения при КЗ энергии конденсаторной батареи хватает для срабатывания РЗ и отключения выключателя.
Преимущества.1. Более экономичный, чем постоянный ток. Не требует специального помещения и обслуживающего персонала.2. Более надежный, чем переменный ток.
Недостатки. 1. Требует блока питания.2. Мощность питания кратковременная. На время разряда конденсатора. Это ограничивает их применение.
Постоянный оперативный ток
В качестве источника постоянного тока используются аккумуляторные батареи с напряжением 110-220 В, а на небольших подстанциях 24-48 В, от которых осуществляется централизованное питание оперативных цепей всех присоединений. Для повышений надежности сеть постоянного тока секционируется на несколько участков, имеющих самостоятельное питание от сборных шин батареи.
Аккумуляторные батареи обеспечивают питание оперативных цепей в любой момент времени с необходимым уровнем напряжения и мощности независимо от состояния основной сети и поэтому являются самым надежным источником питания. В то же время аккумуляторные батареи значительно дороже других источников оперативного тока, для них требуются зарядные агрегаты, специальное помещение и квалифицированный уход. Кроме того, из-за централизации питания создается сложная, протяженная и дорогостоящая сеть постоянного тока. В связи с этим за последнее время получает широкое применение и переменный оперативный ток.
Переменный оперативный ток
Для питания оперативных цепей переменным током используется ток или напряжение сети. В соответствии с этим в качестве источников переменного оперативного тока служат трансформаторы тока, трансформаторы напряжения и трансформаторы собственных нужд.
Трансформаторы тока являются весьма надежным источником питания оперативных цепей для защит от к.з. При к.з. ток и напряжение на зажимах трансформаторов тока увеличиваются, поэтому в момент срабатывания защиты мощность трансформаторов тока возрастает, что и обеспечивает надежное питание оперативных цепей.
Однако трансформаторы тока не обеспечивают необходимой мощности при повреждениях и ненормальных режимах, не сопровождающихся увеличением тока на защищаемом присоединении. Поэтому их нельзя использовать для питания защит от замыкания на землю в сети с изолированной нейтралью, защит от витковых замыканий в трансформаторах и генераторах или защит от таких ненормальных режимов, как повышение или понижение напряжения и понижение частоты.
Трансформаторы напряжения и трансформаторы собственных нужд непригодны для питания оперативных цепей защит от к.з., так как при к. з. напряжение в сети резко снижается и может в неблагоприятных случаях стать равным нулю. В то же время при повреждениях и ненормальных режимах, не сопровождающихся глубокими понижениями напряжения в сети, трансформаторы напряжения и трансформаторы собственных нужд могут использоваться для питания таких защит, как, например, защиты от перегрузки, от замыканий на землю, повышения напряжения и т. д.
Заряженный конденсатор. Помимо непосредственного использования мощности трансформаторов тока и напряжения можно использовать энергию, накопленную в предварительно заряженном конденсаторе.
Разрядный ток конденсатора, имеющий необходимые величину и продолжительность, может питать оперативную цепь в момент действия защиты независимо от характера повреждения или ненормального режима в сети. Предварительный заряд конденсатора обычно осуществляется в нормальном режиме от напряжения сети. При исчезновении напряжения на подстанции запасенная конденсатором энергия сохраняется. Поэтому заряженный конденсатор может использоваться также для питания защит и автоматов, которые должны работать при исчезновении напряжения на подстанции.
Питание цепей управления выключателей. Дистанционное управление выключателями и их автоматическое включение от АПВ или АВР должно производиться при любых нагрузках на присоединении и при отсутствии напряжения на шинах подстанции, чего не обеспечивают трансформаторы тока. Поэтому питание цепей дистанционного управления, АПВ и АВР производится от трансформаторов напряжения, трансформаторов собственных нужд и заряженных конденсаторов. Таким образом, каждый источник переменного оперативного тока имеет свою, рассмотренную выше, область применения. При этом возможность использования того или иного источника определяется мощностью, которую он может дать в момент производства операций.
Мощность источника питания должна некоторым запасом превосходить мощность, потребляемую оперативными цепями, основной составляющей которой является мощность, затрачиваемая приводом на отключение и включение выключателей.
Наибольшие затруднения из-за недостаточной мощности возникают при применении трансформаторов тока и трансформаторов напряжения. Учитывая, что включение и отключение выключателей является кратковременной операцией, можно допускать значительные перегрузки измерительных трансформаторов без ущерба для них.