
- •Кубанский государственный университет физической культуры, спорта и туризма
- •Краснодар 2010
- •Раздел 1. Место естественных наук в культуре.
- •Глава 1.1. Основные положения современной теории познания и специфика познания научного.
- •Глава 1.2. Структура естественнонаучного познания
- •Раздел 2. Основные концепции современной физики.9
- •Глава 2.1. Принцип относительности Галилея.
- •Глава 2.2 Основные положения специальной теории относительности.
- •Глава 2.3. Основные положения общей теории относительности.11
- •Глава 2.4. Основные положения квантовой теории.
- •Квантовая механика.
- •2.4.2. Основные принципы квантовой теории.
- •2.4.3. Микроуровень организации материи
- •2.4.4. Фундаментальные взаимодействия.
- •Глава 2..5. Действие закона сохранения в макромире.
- •2.5.2. Природа тепловой формы энергии.
- •Глава 2.6. Первое начало термодинамики.
- •Глава 2.7. Второе начало термодинамики.
- •Глава 2.8. Гипотеза тепловой смерти Вселенной.
- •Глава 2.9. Открытые системы, синергетика.
- •Глава 2.10. Синергетика – наука о зарождении порядка из хаоса.
- •Раздел 3. Основные концепции современной космологии.
- •Глава 3.1. Основные принципы современной космологии.
- •Глава 3.2. Концепция расширяющейся вселенной и модель «Большого взрыва»
- •Глава 3.3. Происхождение и эволюция Земли.
- •3.3.2. Основные положения современной гипотезы происхождения Земли.
- •3.3.3. Современные геосферы Земли.
- •Раздел 4. Основные концепции современной химии.
- •Глава 4.1. Основные понятия химии.
- •Глава 4.2. Квантово-механическое обоснование периодического закона элементов.
- •Глава 4.3. Кинетика и термодинамика химических реакций.
- •Раздел 5. Основные концепции современной биологии.
- •Глава 5.1. Критерии живого.
- •Глава 5.2. Биоэнергетика на уровне экосистем.
- •Глава 5.3. Биоэнергетика на уровне организма.
- •Глава 5.4. Природа устойчивости живых систем.40
- •Глава 5.5. Динамика экосистем. 41
- •Глава 5.6. Понятие о биосфере. 42
- •Глава 5.7. Основные понятия современной генетики.
- •5.7.3. Экспрессия генов.
- •Глава 5.8. Основные направления современной молекулярной генетики.
- •5.8.2. Генная инженерия.
- •Глава 5.9. Современная теория эволюции.
- •Глава 5.10. Движущие силы эволюции.
- •5.10.1Наследственность.
- •5.10.2. Изменчивость.
- •5.10.3. Природа наследственной изменчивости 51
- •5.10.4. Природа и характер естественного отбора.
- •Глава 5.11. Концепция коэволюции.
- •Глава 5.12. Основные концепции возникновения жизни.
- •Глава 5.13. Современная модель происхождения и развития жизни.
- •Глава 5.14. Экология происхождения и эволюции человека.
- •Глава 5.15. Социальная экология.
- •5.15.1. Экологическая характеристика общества охотников и собирателей.
- •5.15.2. Переход к сельскому хозяйству.
- •5.15.3. Социальные последствия перехода к сельскому хозяйству.
- •Экологические последствия перехода к сельскому хозяйству.
- •Глава 5.16. Эволюция природопользования.
- •5.16.1. Экологическая характеристика натурального хозяйства и товарного производства.
- •Глава 5.17. Формирование среды обитания человека.
- •Глава 5.18. Естественнонаучное понимание социального в природе человека.
- •5.18.1. Природа потребностей человека.
- •5.18.2. Устойчивое развитие
- •Глава 5.16. Эволюция природопользования. 70
- •Глава 5.17. Формирование среды обитания человека. 72
- •Глава 5.18. Естественнонаучное понимание социального
Глава 4.3. Кинетика и термодинамика химических реакций.
Разрыв химических связей сопровождается поглощением определенного количества энергии (эндотермическая реакция), а образование связи – выделением энергии (экзотермическая реакция). В зависимости от соотношения этих количеств в результате химической реакции энергия выделяется или поглощается. Оба типа реакций являются идут в соответствии со вторым началом термодинамики для открытых систем. Экзотермические реакции порождают хаос, допуская утечку энергии в окружающую среду, но при этом понижают энтропию внутри системы, создавая новую более сложную структуру. Эндотермические реакции понижают энтропию в окружающей среде и за счет энергии взятой извне увеличивают хаос внутри системы.
Основными направлениями современной химии являются кинетика и термодинамика химических реакций, которые позволяют теоретически объяснить эффективность и скорость протекания реакций. В соответствии с господствующей теорией «соударения», эффективность и скорость реакции зависят от концентрации реагирующих веществ и кинетической энергии хаотичного движения их молекул. Однако высокая эффективность и скорость многих реакций имеет место и при низких концентрациях и пониженной температуре. В этом случае эффективность обеспечивается наличием в реакционной смеси катализатора - вещества, ускоряющего химическую реакцию, но не входящее в состав ее конечных продуктов. Например. Механизм действия катализатора К в реакции А+В=АВ можно схематически показать так: 1) А+К=АК; 2) АК.+В=АВ+К. При этом взаимодействие реагирующих веществ с катализаторами не обязательно имеет химическую природу. Эффективность реакций в живых клетках ограничена достаточно низкими температурами, связными с сохранением белковой структуры и низкими концентрациями реагирующих веществ, поэтому все клеточные реакции являются каталитическими. Роль катализаторов большинства реакций в живых клетках играют белки - ферменты. В основе механизма работы многих ферментов лежит соответствие его пространственной структуры и пространственных структур реагирующих веществ по принципу «ключа» - «замочной скважины». Как правило, ферменты являются высокоспецифичными и обеспечивают только одну или несколько однотипных реакций.
Все химические реакции делятся на два типа: обратимые и необратимые. Необратимые реакции протекают только в одном направлении – образование продуктов реакции и идут до полного
расходования хотя бы одного из реагирующих веществ.
В ходе обратимых реакций ни одно из реагирующих веществ не расходуется полностью. Обратимыми называют реакции, которые одновременно протекают в прямом и обратном направлении.
Состояние обратимой реакции, при котором скорость прямой реакции равна скорости обратной реакции, называется химическим равновесием. В равновесном состоянии прямая и обратная реакции не прекращаются. Но так как их скорости при этом равны, то видимых изменений в системе не происходит: концентрации всех реагирующих веществ остаются постоянными. Изучение термодинамики обратимых и необратимых химических реакций показало, что динамическое равновесие обратимых реакций может быть смещено, и направление этого смещения определяется принципом французского ученого Ле-Шателье. Если на систему, находящуюся в состоянии динамического равновесия оказать внешнее воздействие (изменить концентрацию, температуру, давление), то равновесие смещается в сторону той реакции, которая противодействует этому воздействию. На этом принципе базируется саморегуляция равновесия не только химических реакций, но и любых других открытых систем.
Во многих химических реакциях сначала образуется небольшое вещество активных атомов или свободных радикалов, быстро реагирующих с молекулами исходных веществ, затем они снова образуются так, что их концентрация не меняется. Получается, что одна такая частица может вызвать цепь повторяющихся неразветвленных и разветвленных реакций (цепных реакций).
Кинетика и термодинамика различных типов химических реакций легли в основу таких направлений современной химии, как химическая эволюция и самоуправляемые сложные химические реакции. Создавая комплекс определенных физических условий, источников энергии и катализаторов, можно добиться того, что смесь определенных простых веществ путем последовательности неконтролируемых человеком химических реакций с образованием промежуточных соединений, придет к созданию нужного нам конечного продукта. Таким образом, в условиях ультрафиолетового облучения периодических электрических разрядов, из смеси водорода, аммиака, метана, окиси углерода, углекислого газа, сероводорода и минимальных количеств кислорода, удалось получить самопроизвольный синтез аминокислот, сахаров, азотистых оснований и более сложных органических соединений. Например - предшественники ферментов и хлорофилл растений. Все это в принципе доказывает возможность появления сложных органических соединений из неорганических простых веществ путем самопроизвольной химической эволюции.