Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции ОСНОВЫ ФИЗИКИ РЕАКТОРОВ.doc
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
7.01 Mб
Скачать
  1. Стационарная концентрация

При длительной работе реактора на постоянной мощности устанавливаются равновесные концентрации 135I и 135Хе в реакторе, которые определяются из уравнений (7.2) при условии стационарности dNI/dt=0 и dNXe/dt=0:

(NI)ст=ησf5φN5/λI ; (NXe)ст= . (7.4)

Концентрация 135Хе зависит от плотности потока нейтронов и при больших значениях ее (σXeφ>>λXe) достигает максимальных (предельных) значений:

(NXe)пред=ησf5N5/σXe ; (7.5)

Подставив соотношение (7.5) в соотношение (7.3), получим:

(qXe)пред=ησf55,

Т.е. не зависит ни от спектра нейтронов, ни от сечения захвата ксенона. Подставив сечения для 235U, получим: (qXe)пред 0,05.

Условие σXeφ>>λXe выполняется при φ>>1013 нейтр/(см2с). Для современных энергетических реакторов это условие выполняется.

  1. Выход реактора на мощность

Накопление 135Хе в ядерном топливе при выходе реактора на мощность идет по сложной зависимости (см. соотношения (7.2)), определяемой сначала 135I с периодом полураспада 6,7 часа, а затем – 135Хе с периодом полураспада 9,1 часа (см. рис. 7.1).

Рис. 7.1 Накопление 135Хе в топливе при выходе реактора на мощность

  1. Остановка реактора

Сразу после остановки реактора, перед этим долго работавшего на постоянной мощности, равновесие (см. соотношение (7.2)) нарушается: 135Хе перестает выгорать, т.к. поток нейтронов после остановки реактора равен нулю, а за счет распада 135I концентрация 135Хе после остановки реактора растет до тех пор, пока не начинает сказываться распад 135Хе, в результате которого в конце концов концентрация 135Хе снижается до нуля. Этот эффект снижения реактивности после остановки реактора известен под названием йодная яма. (см. рис. 7.1). Для эксплуатации ядерных реакторов йодная яма крайне нежелательна, поскольку надо либо ждать 20-30 часов, пока концентрации 135Хе вернется к той, которая была до остановки реактора, либо иметь большой запас реактивности, чтобы этот запас использовать для вывода находящегося в йодной яме реактора на мощность, но это экономически не выгодно и конструктивно сложно.

На рис. 7.2 приведен график изменения концентрации 135Хе в топливе после остановки реактора. Из графика видно, что при увеличении удельной мощности в МВт, снимаемой с 1 тонны 235U, глубина и ширина йодной ямы возрастают.

Рис. 7.2 Увеличение концентрации 135Хе в топливе после остановки реактора

В современных энергетических реакторах φ~5.1013 н/(см2с), Po~2000 МВт/т, поэтому:

(qXe)max~2(qXe)cт~0,1. В таком случае для выхода из йодной ямы необходимо иметь дополнительный запас реактивности Δk/k=(qXe)max - (qXe)cт ~ 0,05. Ясно, что такой запас реактивности для выхода из йодной ямы держать накладно.

Максимум отравления после остановки реактора достигается через ~ 10 часов практически независимо от мощности, на которой реактор работал до остановки. Концентрация 135Хе возвращается к исходному значению через 20-30 часов; это время тем больше, чем выше была мощность реактора.