- •Часть I. Основы процессов защиты атмосферы от загрязнений
- •Лекция 1. Введение. Общая схема загрязнения окружающей среды
- •Контрольные вопросы
- •Лекция 2. Физические явления в поведении аэрозольных частиц в атмосферном воздухе
- •2.1. Броуновская коагуляция
- •1. Общее уравнение осаждения частиц
- •4. Гравитационное осаждение частиц
- •1. Абсорбционные методы очистки газов
- •1.2. Абсорбция, сопровождаемая химической реакцией
- •1.1. Некаталитический процесс с использованием аммиака
- •1.2. Метод селективного каталитического восстановления (скв)
- •1.3. Неселективное каталитическое восстановление (нскв)
- •2.1. Процесс с использованием СuO/CuSo4
- •2.2. Процесс с использованием извести
- •2.3. Процесс с введением сухого сорбента
- •Теоретические основы защиты окружающей среды
- •Часть I. Основы процессов защиты
- •Атмосферы от загрязнений
- •432027, Ульяновск, Сев. Венец, 32
1.1. Некаталитический процесс с использованием аммиака
Метод основан на восстановлении NО до N2 и Н2О в присутствии кислорода и вводимого восстановителя – аммиака (NН3) и предназначен для очистки отходящих газов систем сжигания от оксидов азота. Процесс описывается следующими уравнениями:
NH4NO2 N2 + 2Н2О, (121)
4NН3 +6NО 5N2 + 6Н2О. (122)
Первая реакция преобладает при температуре газового потока в интервале 880–1000 оС. Начиная с 1100 оС вклад реакции становится существенным и наблюдается нежелательное образование NО. Таким образом, процесс восстановления очень чувствителен к температуре и наиболее эффективен в достаточно узком температурном интервале 970 50 оС.
Степень восстановления оксидов азота определяется следующими факторами:
1. Тип топки, характеристики топлива.
2. Время пребывания газовой смеси в области оптимальной температуры в процессе движения потока.
3. Распределение и температуры в топке.
4. Отношение NН3 /NОx и концентрация NОx.
5. Перемешивание в потоке.
Поскольку данный метод очистки топочных газов находится в стадии развития, необходимо отметить ряд недостатков, нерешенных вопросов и факторов, позволяющих в будущем его усовершенствовать.
1. Необходимо очень точно устанавливать место ввода аммиака в топочный газ, поскольку процесс восстановления NО аммиаком эффективно протекает в узком температурном интервале.
2. Строгие требования к процессу восстановления и зависи-мость температуры потока от загрузки и его калорийности могут ограничивать мощность сжигающего устройства.
3. Выброс в атмосферу аммиака (обычно не выше 50 млн-1) и других побочных продуктов.
4. При сжигании высокосернистых нефтей или углей тепло-обменник котла может забиваться бисульфатом аммония.
5. Стоимость очистки может превысить затраты на усовер-шенствование сжигающего устройства.
1.2. Метод селективного каталитического восстановления (скв)
Селективное каталитическое восстановление основано на реакции восстановления оксидов азота аммиаком на поверхности гетерогенного катализатора в присутствии кислорода. Термин «селективный» в данном случае отражает предпочтительное протекание каталитической реакции аммиака с оксидами азота по сравнению с кислородом. В то же время кислород является реагентом в каталитической реакции. Метод СКВ применим в первую очередь к топочным газам в условиях полного сгорания – содержание кислорода в них более 1 % и отходящий газ подвергается химической реакции в окислительных условиях. Ранее описанный процесс некаталитического восстановления (НКВ) применим к топочным газам с высоким процентным содержанием исходного топлива, т. е. когда обеспе-чиваются восстанавливающие свойства газового потока. Процесс СКВ может быть представлен следующими брутто-уравнениями:
2NH3 + 2NO +1/2O2 2N2 +3H2O, (123)
2NH3 + NO2 +1/2O2 3/2N2 +3H2O. (124)
Реакция является основной, так как оксид азота NO составляет обычно около 95% в сумме оксидов азота. В соответствии с этими уравнениями и с теоретической точки зрения достаточно стехиометрического количества аммиака относительно оксидов азота для перевода их в экономически чистые продукты – молекулярный азот (N2) и H2O. При мольном отношении NH3 : NОх = 1:1 восстанавливается 80–90 % оксидов азота, и в отходящем газе содержание аммиака не превышает 20 млн -1. Метод СКВ используется в широком масштабе для очистки газов городских и промышленных котельных, работающих на газе и нефти.
Эффективность метода СКВ определяется параметрами:
1) система сжигания – вид топлива;
2) состав катализатора;
3) активность катализатора, его селективность и время действия;
4) форма катализатора, конфигурация каталитического реактора;
5) отношение NH3 : NОх и концентрация NОх;
6) температура каталитического реактора;
7) скорость газового потока.
Наиболее эффективно каталитическое восстановление происходит в области 300–450 оС.
Большинство катализаторов формируется на основе диоксида титана (TiO2) и пентоксида ванадия (V2O5). Диоксид титана – удобный носитель и не отравляется SO3. Пентоксид ванадия промотирует реакцию взаимодействия аммиака и оксидов азота и мало чувствителен к действию SOх.
Основной недостаток метода СКВ – образование и осаждение на стенках технологического оборудования твердого сульфата аммония и расплава бисульфата аммония при выходе из каталитического реактора. Эти соединения – (NH4)2SO4 и NH4НSO4, образуются по реакции вводимого аммиака с SO3, который получается при сгорании высокосернистых топлив. Особенно трудно избежать осаждения солей в воздушном теплообменнике.
Другими проблемами являются: выбросы в атмосферу аммиака и его соединений, а также иных нежелательных продуктов, например SO3; необходимость использования дополнительных устройств для очистки потока: блок обессеривания и др.; отсутствие надежной аппаратуры для определения количества аммиака в отходящем газе; чувствительность каталитического процесса к температурному режиму и связанные с этим ограничения в загрузке и топлива; замена и дезактивация катализатора удобными с точки зрения охраны окружающей среды методами; надежность устройств очистки и их экономическая целесообразность.
Несмотря на это, метод СКВ успешно используют для очистки газов котельных, работающих на нефти и газе; в стадии проектирования находится ряд сжигающих устройств на угле. При необходимости восстановить 80 % или более оксидов азота в топочном газе метод СКВ является единственно возможным. Кроме того, метод предполагает совершенствование; его можно успешно сочетать с методами совершенствования системы сжигания для снижения количества оксидов азота.
