
- •(Конспект лекций)
- •Содержание
- •3 Сосудистая оболочка; 4 радужная оболочка; 5 сетчатка;
- •6 Зрительный нерв; 7 центральная ямка (макула?); 8 хрусталик;
- •9 Слепое пятно; 10 зрачок; 11 стекловидное тело.
- •Квантование изображений
- •2.2. Типы представления изображений
- •2.3. Пиксели, разрешение, размер изображения
- •2.4. Цветовая глубина
- •2.5. Типы изображений
- •2.6. Размер растровых изображений
- •2.7. Форматы данных
- •Распространенные форматы файлов растровой графики
- •Файлы bmp
- •Файлы pcx
- •Файлы tiff
- •Файлы gif
- •Файлы png
- •Файлы jpeg
- •Распространенные форматы файлов растровой графики
- •3.1. Улучшение визуального качества изображений путем поэлементного преобразования
- •3.2. Линейное контрастирование изображения
- •3.3. Соляризация изображения
- •3.4. Препарирование изображения
- •3.5. Преобразование гистограмм, эквализация
- •3.6. Применение табличного метода при поэлементных преобразованиях изображений
- •4.1. Введение в Фурье-преобразование
- •4.2. Двумерное дискретное преобразование Фурье
- •5.1. Оптимальная линейная фильтрация. Уравнение Винера-Хопфа
- •5.2. Масочная (оконная) фильтрация изображений
- •Влияние размера выборки
- •5.3. Медианная фильтрация
- •Сравнение алгоритмов фильтрации
- •6.1. Сегментация изображений
- •6.1.1. Основные принципы сегментации изображений
- •6.1.2. Пороговое ограничение
- •6.1.3. Центроидное связывание
- •6.1.4. Алгоритмы слияния-расщепления
- •6.1.5. Алгоритмы разметки точек смешанного типа
- •6.1.6. Раскраска изображений
- •6.1.7. Сегментация путем выделения границ
- •6.1.8. Подавления шумов
- •6.2. Формализация задач распознавания изображений
- •6.2.1. Распознавание с помощью инвариантных признаков
- •6.2.2. Корреляционные алгоритмы распознавания
- •6.2.3. Распознавание с помощью нормализации
- •7.1. Преобразование изображений – преобразование Хока
- •7.2. Математическая морфология и обработка изображений
- •8.1. Основы цветного зрения
- •8.2. Цветовые модели
- •8.3. Основы цветной печати (цветоделение)
- •Вельтмандер п.В.Учебное пособие "Архитектуры графических систем. Машинная графика" Книга 2
- •Роуз а. Зрение человека и электронное зрение./ Перевод с английского под редакцией в.С.Вавилова. - м.: Мир, 1977
- •9.2. Методы сжатия изображений без потерь
- •9.3. Методы сжатия изображений с потерями
- •9.4. Фрактальное и вейвлетное сжатие изображений
- •9.1. Основы сжатия изображений
- •2N2n элементов, а во втором случае – нечетном косинусном преобразовании,
- •Матрицы Хаара
- •Преобразование Уолша – Адамара можно рассматривать как дискретный аналог непрерывного преобразования по базису, составленному из функций Уолша.
- •Результаты статистических исследований ортогональных преобразований
- •Информационное описание поиска и распознавания объектов
- •10.1. Управление процессами обработки и анализа изображений
- •10.2. Современная технология содержательного поиска в электронных коллекциях изображений
- •11. Обработка аудиоинформации
- •11.2. Цифровое представление звука Цифро-аналоговое и аналого-цифровое преобразование
- •11.3. Восприятие звука человеком
- •Клиппирование речевого сигнала
- •Избыточность речевого сигнала. Вокодер
- •Более сложные методы сжатия
- •Некоторые характеристики технологии mpeg
- •Алгоритм кодирования mpeg
- •Уровни mpeg
- •Intensity stereo coding – в высокочастотных подполосах кодируется суммированный из двух каналов сигнал вместо различных сигналов левого и правого каналов.
- •Технология mp3
- •TwinVq-кодирование
- •Сравнение звуковых форматов
- •12.1. Проблемы, возникающие при распознавании речи
- •12.2. Обзор алгоритмов распознавания речи
- •12.3. Синтез речи
- •12.1. Проблемы, возникающие при распознавании речи
- •12.2. Обзор алгоритмов распознавания речи
- •12.3. Синтез речи
- •12.5. Классификация речевых систем
- •12.6. РЕчевые технологии
- •Рекомендуемая литература Учебная и методическая литература
- •Другие виды литературы
2.7. Форматы данных
В файле растровой графики (bitmap file) содержится информация, необходимая компьютеру для воссоздания изображения. На экране мы можем увидеть красивое изображение заката солнца, но компьютер воспринимает эту картину в виде единиц и нулей. То, что делает компьютер с этими единицами и нулями, и позволяет воспроизвести первоначальное изображение. В конечном итоге биты и байты в растровом массиве (bitmap) сообщают компьютеру, в какой цвет окрасить каждый пиксел изображения. Затем компьютер преобразует цвета растрового массива в формат, совместимый с адаптером его дисплея, и передает этот формат аппаратуре вывода видеоизображения.
Существует несколько форматов файлов растровой графики, и каждый формат предусматривает собственный способ кодирования информации о пикселах и другой присущей компьютерным изображениям информации. Так что же находится внутри файла растровой графики и чем отличается один формат от другого? Рассмотрим коротко шесть наиболее популярных в ПК форматов графических файлов. Существуют, и другие форматы растровой графики, а также форматы файлов для векторной графики, однако в повседневной работе, вероятнее всего, вы не сталкиваетесь с ними.
Распространенные форматы файлов растровой графики
Формат |
Макс. число бит/пиксел |
Макс. число цветов |
Макс. размер изображения, пиксел |
Методы сжатия |
Кодирование нескольких изображений |
BMP |
24 |
16'777'216 |
65535 x 65535 |
RLE |
- |
GIF |
8 |
256 |
65'535 x 65535 |
LZW |
+ |
JPEG |
24 |
16'777'216 |
65535 x 65535 |
JPEG |
- |
PCX |
24 |
16'777'216 |
65535 x 65535 |
RLE |
- |
PNG |
48 |
281'474'976'710'656 |
2'147'483'647 x 2 147 483 647 |
Deflation (вариант LZ77) |
- |
TIFF |
24 |
16'777'216 |
всего 4'294'967'295 |
LZW, RLE и другие |
+ |
Файлы bmp
Формат файла BMP (сокращенно от BitMaP) - это "родной" формат растровой графики для Windows, поскольку он наиболее близко соответствует внутреннему формату Windows, в котором эта система хранит свои растровые массивы. Для имени файла, представленного в BMP-формате, чаще всего используется расширение BMP, хотя некоторые файлы имеют расширение RLE, означающее run length encoding (кодирование длины серий). Расширение RLE имени файла обычно указывает на то, что произведено сжатие растровой информации файла одним из двух способов сжатия RLE, которые допустимы для файлов BMP-формата.
В файлах BMP информация о цвете каждого пиксела кодируется 1, 4, 8, 16 или 24 бит (бит/пиксел). Числом бит/пиксел, называемым также глубиной представления цвета, определяется максимальное число цветов в изображении. Изображение при глубине 1 бит/пиксел может иметь всего два цвета, а при глубине 24 бит/пиксел - более 16 млн. различных цветов.
Структура типичного BMP-файла, содержащего 256-цветное изображение (с глубиной 8 бит/пиксел). Файл разбит на четыре основные раздела: заголовок файла растровой графики, информационный заголовок растрового массива, таблица цветов и собственно данные растрового массива. Не все файлы BMP имеют структуру, подобную показанной на схеме. Например, файлы BMP с глубиной 16 и 24 бит/пиксел не имеют таблиц цветов; в этих файлах значения пикселов растрового массива непосредственно характеризуют значения цветов RGB. Также могут различаться внутренние форматы хранения отдельных разделов файла. Например, информация растрового массива в некоторых 16 и 256-цветных BMP-файлах может сжиматься посредством алгоритма RLE, который заменяет последовательности идентичных пикселов изображения на лексемы, определяющие число пикселов в последовательности и их цвет. В Windows допускается работа с BMP-файлами стиля OS/2, в которых используются различные форматы информационного заголовка растрового массива и таблицы цветов. |
|