Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФНП_Лекц_ПС.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
249.86 Кб
Скачать

1.9. Экстремум функции двух переменных

Определение 1.11 Пусть задана функция двух переменных z=z(x,y), (x,y) D. Точка M0(x0;y0) - внутренняя точка области D.

Если в D присутствует такая окрестность UM0 точки M0, что для всех точек

то точка M0 называется точкой локального максимума. А само значение z(M0) - локальным максимумом.

А если же для всех точек

то точка M0 называется точкой локального минимума функции z(x,y). А само значение z(M0) - локальным минимумом.

Локальный максимум и локальный минимум называются локальными экстремумами функции z(x,y). На рис. 1.4 поясняется геометрический смысл локального максимума: M0 - точка максимума, так как на поверхности z =z (x,y) соответствующая ей точка C0 находится выше любой соседней точки C (в этом локальность максимума).

Заметим, что на поверхности в целом есть точки (например, В), которые находятся выше C0, но эти точки (например, В) не являются "соседними" с точкой C0.

В частности, точке В соответствует понятие глобального максимума:

Аналогично определяется и глобальный минимум:

Нахождение глобальных максимумов и минимумов будет рассмотрено в п.1.10.

Теорема 1.3 (необходимые условия экстремума).

Пусть задана функция z =z (x,y), (x,y) D. Точка M0(x0;y0 D - точка локального экстремума.

Если в этой точке существуют z'x и z'y, то

Геометрическое доказательство "очевидно". Если в точке C0 на (рис.1.4) провести касательную плоскость, то она "естественно" пройдет горизонтально, т. е. под углом к оси Ох и к оси Оу.

Тогда в соответствии с геометрическим смыслом частных производных (рис.1.3):

что и требовалось доказать.

Определение 1.12.

Если в точке M0 выполняются условия (1.41), то она называется стационарной точкой функции z (x,y).

Теорема 1.4 (достаточные условия экстремума).

Пусть задана z =z (x,y), (x,y) D, которая имеет частные производные второго порядка в некоторой окрестности точки M0(x0,y0) D. Причем M0 - стационарная точка (т. е. необходимые условия (1.41) выполнены). Вычислим:

Если:

Доказательство теоремы использует темы (формула Тейлора функции нескольких переменных и теория квадратичных форм), которые в этом пособии не рассматриваются.

Пример 1.13.

Исследовать на экстремум:

Решение

1. Найдём стационарные точки, решая систему (1.41):

то есть найдены четыре стационарные точки. 2.

по теореме 1.4 в точке – минимум. Причём

по теореме 1.4 в точке

- максимум. Причём

1.10. Наибольшее и наименьшее значения функции двух переменных в замкнутой области

Теорема 1.5 Пусть в замкнутой области D задана функция z=z(x,y), имеющая непрерывные частные производные первого порядка. Граница Г области D является кусочно гладкой (т. е. состоит из кусков "гладких на ощупь" кривых или прямых). Тогда в области D функция z(x,y) достигает своего наибольшего M и наименьшего m значений.

Без доказательства.

Можно предложить следующий план нахождения M и m. 1. Строим чертёж, выделяем все части границы области D и находим все "угловые" точки границы. 2. Находим стационарные точки внутри D. 3. Находим стационарные точки на каждой из границ. 4. Вычисляем во всех стационарных и угловых точках, а затем выбираем наибольшее M и наименьшее m значения.

Пример 1.14 Найти наибольшее M и наименьшее m значения функции z = 4x2-2xy+y2-8x в замкнутой области D, ограниченной: x = 0, y = 0, 4x+3y=12 .

Решение

1. Построим область D (рис. 1.5) на плоскости Оху.

Угловые точки: О (0; 0), В (0; 4), А (3; 0).

Граница Г области D состоит из трёх частей:

2. Найдём стационарные точки внутри области D:

3. Стационарные точки на границах l1, l2, l3:

4. Вычисляем шесть значений:

Из полученных шести значений выбираем наибольшее и наименьшее.

Ответ:

1.11. Производная по направлению. Градиент.

Рассматривается функция и единичный вектор . Проводится прямая l через т.М0 с направляющим вектором

Определение 1. Производная функции u = u(x, y, z) по переменной t называется производной по направлению l

Так как на этой прямой u – сложная функция одной переменной, то производная по t равна полной производной по t .

Она обозначается и равна

Определение 2. Градиентом функции u(х1,х2,…,хn) называется вектор, координаты которого равны частным производным функции u :

В нашем случае Таким образом, производная по направлению равна:

, где φ − угол между направляющим вектором прямой и градиентом функции в данной точке. Отсюда следует геометрический и физический смысл градиента функции (необходимо помнить, что скорость изменения функции вдоль прямой l ):

1.      Градиент ортогонален касательной плоскости к поверхности уровня в данной точке.

2.      Градиент направлен в сторону максимального роста (изменения) функции в т.М0 .

{Этот максимум достигается при φ = 0, т.е. при }

3.      Величина наибольшей скорости роста функции равна .