Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекції ОММ 2 О+.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
1.1 Mб
Скачать

1. Загальна форма задачі лінійного програмування (лп).

Означення 1. Загальною формою задачі ЛП є задача на знаходження екстремуму (мінімуму чи максимуму) лінійної цільової функції f при лінійній системі обмежень gi, що включає як рівності, так і нерівності з обох боків при невідомих змінних, з яких одні пов’язані умовою невід’ємності, другі – умовою недодатності, а на знак третіх ніяких умов не накладено, тобто задача має таких вигляд:

f(x)= c1x1 + c2x2 + …. + cnxn →extr (max/min) (1)

a11x1 + a12x2 + a13x3 + ….. +a1nxn{ ≤ = ≥ }b1

a21x1 + a22x2 + a33x3 + …..+ a2nxn{ ≤ = ≥ }b2

ak1x1 + ak2x2 + ak3x3 + …….+ aknxn{ ≤ = ≥ }bk (2)

am.1x1 + am.2x2 + am.3x3 + am.nxn { ≤ = ≥ } bm

xi≥0 i= 1,m (3)

Отже, загальна задача ЛП є формою із змішаною системою обмежень .

Означення 2. Задача ЛП має канонічний вигляд, якщо в загальній формі задачі ЛП присутні тільки обмеження (2) у вигляді рівнянь та (3).

Означення 3. Задача ЛП має стандартний вигляд, якщо в загальній формі задачі ЛП присутні тільки обмеження (2) у вигляді нерівностей ≤ та (2.3), коли шукається max цільвої функції f, або в загальній формі задачі ЛП присутні тільки обмеження (2) у вигляді ≥ та (3), коли шукається min цільвої функції f.

Перейти від стандартного вигляду задачі ЛП можна за допомогою додовання невід’ємних змінних.

В теоретичному плані всі задачі ЛП можна розглядати тільки як задачі на мінімум чи на максимум, змінивши знак цільової функції:

f(x)=c1x1 + c2x2 + c3x3 + …… +cnxn →max

z(x) = - f(x) = -( c1x1 + c2x2 + c3x3 + …… +cnxn) →min

Система обмежень (2) – (3) може бути сумісною або несумісною. Сумісна система обмежень визначає в n-вимірному векторному просторі область визначеності задачі, інакше, область існування планів задачі ЛП. Кожна крапка області означеності є планом задачі, а сама область є множиною планів задачі ЛП.

Формулювання задачі буде некоректним, якщо система обмежень задачі несумісна, суперечлива. Тоді множина планів задачі, не містить жодного плану, буде порожньою.

Запишемо задачу ЛП в матричній формі:

f(x)=(c,x) →max (4)

при обмеженнях

АХ=В (5)

Х≥0 (6)

де ( , ) – скалярний добуток

А – матриця умов задачі

В – вектор обмежень (вектор вільних членів задачі)

Х – вектор невідомих змінних

С – вектор цільової функції.

RangA=k визначає кількість базових змінних (незалежних змінних), усі інші змінні вважаються вільними (залежними).

Рішення системи обмежень, у якому вільні змінні дорівнюють нулеві, зветься базовим планом.

Будь який невід’ємний розв’язок системи обмежень задачі ЛП зветься допустимим планом.

План, що надає цільовій функції максимального значення, будемо вважати оптимальним.

2. Основні теореми та властивості задачі лп.

Запишимо задачу ЛП в векторній формі:

F(x)=(c,x) →max (7)

x1P1 + x2P2 + x3P3 +…… + xnPn= P0 (8)

X≥0 (9)

P1= (a11,a2131…….am1) , P2= (a12,a2232…….am2) , ……….. Pn= (a1n,a2n3n…….anm) ,

P0=(b1 ,b2, b3……. bm) – m-мерні вектор столбці.

Означення 4. План Х=(х123…….хn) називається опорним планом задачі ЛП, якщо система векторів Рj ,які відповідають додатним компонентам xj плану Х, утворюють лінійно незалежну систему.

Так як вектори Рj належать m-мірному простору, то з означення опорного плану витікає, що число його додатних компонент не може буди більш ніж m.

Означення 5. Нехай Х1, Х2, Х3, ……, Хn – вільні крапки евклідова простору Rn. Опуклою лінійною комбінацією цих крапок є сума λ1Х1+ λ2Х2+ λ3Х3+...... + λnХn, де λi≥0 та ∑ λi=1.

Означення 6. Множина U називається опуклою, якщо для будь яких n крапок Х1, Х2 , …Xn є U, до U належить будь яка опукла комбінація цих крапок, тобто [ λ1Х1+ λ2Х2+ λ3Х3+...... + λnХn] є U, де λi≥0 та ∑ λi=1.

Означення 7. Крапка Х опуклої множини є кутовою, якщо ця крапка не може бути означена в вигляді опуклої лінійної комбінації яких не будь n крапок даної множини.

Теорема 1. Опуклий n – мірний многогранік є лінійною комбінацією своїх кутових крапок.

Теорема 2. Множина планів задачі ЛП є опуклою множиною, якщо вона не поржня.

Означення 8. Не поржня множина планів задачі ЛП називається многогранником розв’язків , а будь яка кутова крапка многогранника розв’язків – вершиною.

Теорема 3. Якщо задача ЛП має оптимальний план, то максимальнє значення цільова функція задачі приймає в одній із вершин многогранника розв’язків.

Якщо максимальне значення цільової функції задачі приймає більш ніж в одній вершині, то вона приймає його і в усіх крапках лінійної комбінації цих вершин.

Теорема 4. (Критерій кутової крапки многогранника розв’язків). Для того щоб крапка Х=(х123…..хк, ....... хn), многогранника розв’язків була кутовою, небхіно і достатньо, щоб вектори Рj, які відповідають додатним компонентам хj, утворювали лінійно незалежну систему.

Висновки:

  1. Не поржня множина задачі ЛП – опуклий многогранник.

  2. Кожна вершина многогранника - опорний план.

  3. В одній із вершині многогранника розв’язків цільова функція приймає максимальне значення.

  4. Якщо, максимальне значення цільова функція приймає більш ніж в одній вершині – тоді таке ж значення цільова функція приймає і в лінійній комбінації цих вершин.