
- •Тема 1. Концептуальні аспекти математичного моделювання економіки.
- •Тема 2. Оптимізаційні економіко-математичні моделі.
- •Тема лекції: Математичне моделювання. Економічна та математична постановка матричних та оптимізаційних задач
- •Предмет математичного моделювання.
- •Класификація економіко – математичних моделей. Формальна класіфикація моделей.
- •Задачі математичного програмування.
- •4. Класифікація методів математичного програмування.
- •5. Задачі планування та організації виробництва.
- •5.1. Задача про максимальну рентабельність підприємства.
- •5.2. Задача про завантаження обладнання
- •6. Модель міжгалузевого балансу „Витрати - випуск”.
- •Коефіціети прямих та побічних витрат.
- •Питання для самоконтролю.
- •Тема 2.Загальна задача лінійного програмування та деякі зметодів її розв’язування
- •Тема лекції: Основні теореми та властивості задач лінійного програмування (лп).
- •1. Загальна форма задачі лінійного програмування (лп).
- •2. Основні теореми та властивості задачі лп.
- •3. Графічний метод розв’язання задач мп.
- •Алгоритм знаходження розв’язку задачі мп графічним методом.
- •Питання для самоконтролю.
- •Тема 3. Задача лінійного програмування та методи її розв’язування.
- •Тема 4. Теорія двоїстості та аналіз лінійних моделей оптимізаційних задач.
- •Тема лекції: Вирішення задач лп симплекс-методом. Двоїста задача лп.
- •1. Представлення задач лп в матричній та векторній формі.
- •2. Симплексний метод розв’язання задач лп. Теоретичні основи симплекс-метода.
- •3. Метод штучної бази.
- •4. Двоїста задача лп.
- •Двоїста задача
- •Питання для самоконтролю.
- •Тема 3. Задача лінійного програмування та методи її розв’язування.
- •Тема лекції: Транспортна задача
- •1 Економічна та математична моделі транспортної задачі.
- •2 Основні теореми транспортної задачі.
- •3. Метод північно-західного кута (діагональний.)
- •5. Метод потенціалів.
- •Питання для самоконтролю.
- •Тема 5. Цілочислове програмування
- •Тема 6.Нелінійні оптимізаційні моделі економічних систем
- •Тема лекції: Узагальнення задачі лінійного програмування.
- •Задачі цілочислового програмування.
- •2. Метод Гоморі.
- •3. Параметричне лінійне програмування.
- •Питання для самоконтролю.
- •Тема 7. Аналіз та управління ризиком в економіці.
- •Тема лекції: Економічний ризик: ігрові моделі. Матричні ігри
- •1. Постановка задач теорії ігор з нульовою сумою.
- •Задачі з сідловою точкою. Задачі в чистих стратегіях.
- •Ігри в мішаних стратегіях. Основна теорема теорії ігор.
- •Зведення задач теорії ігор до задач лп.
- •Питання для самоконтролю.
- •Тема 7. Нелінійні оптимізаційні моделі економічних систем
- •Тема лекції: Задача дробово-лінійного програмування
- •Постановка задачі дробово-лінійного програмування.
- •2. Приведення задачі дробово-лінійного програмування до задачі лінійного програмування.
- •3. Розв’янання задач дробово-лінійного програмування.
- •4. Графічне розв’язання задачі дробово-лінійного програмування.
- •Питання для самоконтролю.
- •Тема 6. Нелінійні оптимізаційні моделі економічних систем Лекція 8 Тема лекції: Задачі нелінійного програмування
- •1. Постановка задачі пошуку екстремуму функції.
- •2. Властивості опуклих множин і опуклих функцій
- •Необхідні та достатні умови безумовного екстремуму функції. Необхідні умови першого порядку
- •Необхідні умови екстремуму функції другого порядку
- •Достатні умови екстремуму
- •Перевірка виконання умов функції на екстремум.
- •Критерій Сильвестра перевірки достатніх умов екстремуму.
- •Умовний екстремум при обмеженнях типу рівність.
- •Стратегія вирішення задачі
- •Необхідні умови екстремуму першого порядку при обмеженнях типу рівність.
- •Питання для самоконтролю.
- •Тема 8. Система показників кількісного оцінювання ступеня ризику
- •Тема лекції: Економічний ризик
- •1. Поняття ризику. Причини виникнення, класифікація ризику.
- •3. Кількісні методи оцінки ризиків
- •4. Статистичні ігри
- •Питання для самоконтролю.
Питання для самоконтролю.
Дайте визначення гри двох осіб з нульовою сумою.
Дайте визначення сідловок точки.
Дайте визначення середнього виграшу.
Що таке чиста стратегія?
що таке мішана стратегія?
Що таке домінована стратегія?
Сформулюйте основну теорему теорії ігор для двох осіб.
Як звести задачу теорії ігор до задачі ЛП?
Тема 7. Нелінійні оптимізаційні моделі економічних систем
Лекція 7.
Тема лекції: Задача дробово-лінійного програмування
Мета: ознайомити студентів з методами розв’язання задач дробово-лінійного програмування методом та зведення їх до задач ЛП.
План лекції
1. Постановка задачі дробово-лінійного програмування.
2. Приведення задачі дробово-лінійного програмування до задач ЛП.
3. Розв’язання задач дробово-лінійного програмування.
4. Графічне розв’язання задачі дробово-лінійного програмування.
Література:
1. Лавріненко Н.М., Латинін С.М., Фортуна В.В., Безкровний О.І. Основи економіко-метематичного моделювання: Навч. Посіб. - Львів: «Магнолія 2006», 2010.- 540с.
2. Іванюта І. Д. Практикум з математичного програмування: Навчальний посібник / І. Д. Іванюта, В. І. Рибалка, І. А. Рудоміно-Дусятська. – К.: «Слово», 2008. - 296 с.
3.Кучма М. І. Математичне програмування: приклади і задачі: Навчальний посібник / М.І. Кучма. – Львів: «Новий Світ - 2000», 2006. - 344 с.
Акулич И.Л. Математическое программирование в примерах и задачах. – М.: Высшая школа, 1993. – 336 с.
Постановка задачі дробово-лінійного програмування.
Серед оптимізаційних
задач велике значення мають задачі, у
яких необхідно знайти екстремальні
значення економічних показників, які
є відносними величинами. У таких задач
умови обмеження нічим не відрізняються
від умов обмежень у задачах лінійного
програмування, але цільова функція
являє собою дріб, у якому чисельник і
знаменник представляють собою лінійні
функції від змінних
де хi
– компоненти оптимального плану.
Математична модель задачі дробово-лінійного програмування може бути використана для визначення рентабельності виробництва, витрат розрахункових на грошову одиницю продукції, собівартості продукції, продуктивності праці тощо.
Загальна постановка задачі дробово-лінійного програмування записується так:
Знайти такі значення змінних , які задовольняють системі обмежень:
(1)
умовам
(2)
при яких цільова функція
(3)
досягає максимуму (мінімуму).
Задача (1)-(3) являє собою задачу нелінійного програмування, тому що цільова функція z не є лінійною функцією змінних . Виконавши відповідні перетворення змінних (заміну змінних) задачу можна привести до задачі лінійного програмування й скористатися для її розв’язання симплекс-методом.