
- •Тема 1. Концептуальні аспекти математичного моделювання економіки.
- •Тема 2. Оптимізаційні економіко-математичні моделі.
- •Тема лекції: Математичне моделювання. Економічна та математична постановка матричних та оптимізаційних задач
- •Предмет математичного моделювання.
- •Класификація економіко – математичних моделей. Формальна класіфикація моделей.
- •Задачі математичного програмування.
- •4. Класифікація методів математичного програмування.
- •5. Задачі планування та організації виробництва.
- •5.1. Задача про максимальну рентабельність підприємства.
- •5.2. Задача про завантаження обладнання
- •6. Модель міжгалузевого балансу „Витрати - випуск”.
- •Коефіціети прямих та побічних витрат.
- •Питання для самоконтролю.
- •Тема 2.Загальна задача лінійного програмування та деякі зметодів її розв’язування
- •Тема лекції: Основні теореми та властивості задач лінійного програмування (лп).
- •1. Загальна форма задачі лінійного програмування (лп).
- •2. Основні теореми та властивості задачі лп.
- •3. Графічний метод розв’язання задач мп.
- •Алгоритм знаходження розв’язку задачі мп графічним методом.
- •Питання для самоконтролю.
- •Тема 3. Задача лінійного програмування та методи її розв’язування.
- •Тема 4. Теорія двоїстості та аналіз лінійних моделей оптимізаційних задач.
- •Тема лекції: Вирішення задач лп симплекс-методом. Двоїста задача лп.
- •1. Представлення задач лп в матричній та векторній формі.
- •2. Симплексний метод розв’язання задач лп. Теоретичні основи симплекс-метода.
- •3. Метод штучної бази.
- •4. Двоїста задача лп.
- •Двоїста задача
- •Питання для самоконтролю.
- •Тема 3. Задача лінійного програмування та методи її розв’язування.
- •Тема лекції: Транспортна задача
- •1 Економічна та математична моделі транспортної задачі.
- •2 Основні теореми транспортної задачі.
- •3. Метод північно-західного кута (діагональний.)
- •5. Метод потенціалів.
- •Питання для самоконтролю.
- •Тема 5. Цілочислове програмування
- •Тема 6.Нелінійні оптимізаційні моделі економічних систем
- •Тема лекції: Узагальнення задачі лінійного програмування.
- •Задачі цілочислового програмування.
- •2. Метод Гоморі.
- •3. Параметричне лінійне програмування.
- •Питання для самоконтролю.
- •Тема 7. Аналіз та управління ризиком в економіці.
- •Тема лекції: Економічний ризик: ігрові моделі. Матричні ігри
- •1. Постановка задач теорії ігор з нульовою сумою.
- •Задачі з сідловою точкою. Задачі в чистих стратегіях.
- •Ігри в мішаних стратегіях. Основна теорема теорії ігор.
- •Зведення задач теорії ігор до задач лп.
- •Питання для самоконтролю.
- •Тема 7. Нелінійні оптимізаційні моделі економічних систем
- •Тема лекції: Задача дробово-лінійного програмування
- •Постановка задачі дробово-лінійного програмування.
- •2. Приведення задачі дробово-лінійного програмування до задачі лінійного програмування.
- •3. Розв’янання задач дробово-лінійного програмування.
- •4. Графічне розв’язання задачі дробово-лінійного програмування.
- •Питання для самоконтролю.
- •Тема 6. Нелінійні оптимізаційні моделі економічних систем Лекція 8 Тема лекції: Задачі нелінійного програмування
- •1. Постановка задачі пошуку екстремуму функції.
- •2. Властивості опуклих множин і опуклих функцій
- •Необхідні та достатні умови безумовного екстремуму функції. Необхідні умови першого порядку
- •Необхідні умови екстремуму функції другого порядку
- •Достатні умови екстремуму
- •Перевірка виконання умов функції на екстремум.
- •Критерій Сильвестра перевірки достатніх умов екстремуму.
- •Умовний екстремум при обмеженнях типу рівність.
- •Стратегія вирішення задачі
- •Необхідні умови екстремуму першого порядку при обмеженнях типу рівність.
- •Питання для самоконтролю.
- •Тема 8. Система показників кількісного оцінювання ступеня ризику
- •Тема лекції: Економічний ризик
- •1. Поняття ризику. Причини виникнення, класифікація ризику.
- •3. Кількісні методи оцінки ризиків
- •4. Статистичні ігри
- •Питання для самоконтролю.
Тема 3. Задача лінійного програмування та методи її розв’язування.
Лекція 4
Тема лекції: Транспортна задача
Мета: ознайомити студентів з основними теоремами та методами розв’язання транспортної задачі
План лекції
1. Економічна та математична моделі транспортної задачі.
2. Основні теореми транспортної задачі.
3. Метод північно-західного кута (діагональний).
4. Метод найменших витрат.
5. Метод потенціалів.
Література:
Акулич И.Л. Математическое программирование в примерах и задачах. – М.: Высшая школа, 1993. – 336 с.
2. Іванюта І.Д. Практикум з математичного програмування: Навчальний посібник/ І.Д. Іванюта, В.І. Рибалка, І.А. Рудоміра – Дусятська. – К. : «Слово», 2008. – 296 с.
3. Кучма М.І. Математичне програмування: приклади і задачі: Навчальний посібник/ М.І. Кучма. - Львів: «Новий Світ - 2000», 2006. – 344 с.
4. А. Черемис, Р. Юринець, О. Мищишин. Методи оптимізації в економіці. Навчальний посібник. – К.: Центр навчальної літератури, 2006. – 152 с.
1 Економічна та математична моделі транспортної задачі.
Транспортна задача одна з найпоширеніших задач лінійного програмування. Її мета – розробка найбільш раціональних шляхів і способів транспортування однорідної продукції від постачальників до споживачів.
У загальному вигляді транспортну задачу можна сформулювати так: в m пунктах постачання А1,А2,…… Am (надалі постачальники) міститься однорідна продукція у кількості відповідно а1, а2,….. аm. Цю продукцію потрібно перевезти в n пункти призначення B1,B2,…… Bn (надалі споживачі) у кількості відповідно b1, b2,….. bn. Вартість перевезення одиниці товару (тариф) із пункту Аi в пункт Bj дорівнює сji.
Математична модель транспортної задачі має такий вигляд:
F(xji)= ∑∑ xji сji→ min (1)
за умов
∑xji =ai (i=1,2…..m) (2)
∑xji =bj (j=1,2…..n) (3)
xji≥0 (i=1,2…..m; j=1,2…..n) (4)
Алгоритм і методи розв’язання транспортної задачі можна використати для знаходження розв’язку деяких економічних задач, які не мають нічого спільного з транспортуванням вантажів. У цьому разі величини тарифів перевезення сji мають різний зміст залежно від конкретної задачі. До таких задач належать наступні:
Оптимальне закріплення за верстатами операцій з обробки деталей. У них сji означає продуктивність праці.
Розміщення сільськогосподарських культур за ділянками землі різної врожайності.
Оптимальні призначення або проблема вибору.
Задача про скорочення виробництва із врахуванням загальних витрат на виготовлення і транспортування продукції
Збільшення продуктивності автомобільного транспорту за рахунок мінімізації порожнього пробігу
2 Основні теореми транспортної задачі.
Означення 1. Якщо у транспортної задачі виконується умова балансу
∑bj = ∑ai (5)
То задача називається закритою або збалансованою.
Означення 2. Планом транспортної задачі називається сукупність величин xji (i=1,2…..m; j=1,2…..n), який задовольняє умови обмеження (2) – (4).
Означення 3. Опорний план транспортної задачі називається не виродженим, якщо він містить N=m+n-1 додатних елементів xji
Означення 4. Якщо опорний план містить менше N<m+n-1 додатних елементів, то він називається виродженим.
Означення 5. Оптимальним планом транспортної задачі називають матрицю Х* , яка задовольняє умови задачі (2) – (4) і для якої цільова функція F набуває мінімального значення.
Теорема 1. (Необхідна і достатня умова існування розв’язку задачі ТЗ).
Транспортна задача має розв’язок тоді і тільки тоді, коли вона збалансована, тобто виконується умова (5).
Теорема 2. Для того щоб деякий план Х транспортної задачі був оптимальним необхідно і достатньо, щоб йому відповідала така система із m+n чисел ui (i=1,2…..m) vj ( j=1,2…..n) для якої виконуються умови
vj - ui = сji для xji>0
vj - ui ≤ сji для xji=0.
Означення 6. Числа vj та ui називаються потенціалами строк та стовпців.