Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекції ОММ 2 О+.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
1.1 Mб
Скачать

Тема 3. Задача лінійного програмування та методи її розв’язування.

Лекція 4

Тема лекції: Транспортна задача

Мета: ознайомити студентів з основними теоремами та методами розв’язання транспортної задачі

План лекції

1. Економічна та математична моделі транспортної задачі.

2. Основні теореми транспортної задачі.

3. Метод північно-західного кута (діагональний).

4. Метод найменших витрат.

5. Метод потенціалів.

Література:

  1. Акулич И.Л. Математическое программирование в примерах и задачах. – М.: Высшая школа, 1993. – 336 с.

2. Іванюта І.Д. Практикум з математичного програмування: Навчальний посібник/ І.Д. Іванюта, В.І. Рибалка, І.А. Рудоміра – Дусятська. – К. : «Слово», 2008. – 296 с.

3. Кучма М.І. Математичне програмування: приклади і задачі: Навчальний посібник/ М.І. Кучма. - Львів: «Новий Світ - 2000», 2006. – 344 с.

4. А. Черемис, Р. Юринець, О. Мищишин. Методи оптимізації в економіці. Навчальний посібник. – К.: Центр навчальної літератури, 2006. – 152 с.

1 Економічна та математична моделі транспортної задачі.

Транспортна задача одна з найпоширеніших задач лінійного програмування. Її мета – розробка найбільш раціональних шляхів і способів транспортування однорідної продукції від постачальників до споживачів.

У загальному вигляді транспортну задачу можна сформулювати так: в m пунктах постачання А1,А2,…… Am (надалі постачальники) міститься однорідна продукція у кількості відповідно а1, а2,….. аm. Цю продукцію потрібно перевезти в n пункти призначення B1,B2,…… Bn (надалі споживачі) у кількості відповідно b1, b2,….. bn. Вартість перевезення одиниці товару (тариф) із пункту Аi в пункт Bj дорівнює сji.

Математична модель транспортної задачі має такий вигляд:

F(xji)= ∑∑ xji сji min (1)

за умов

∑xji =ai (i=1,2…..m) (2)

∑xji =bj (j=1,2…..n) (3)

xji≥0 (i=1,2…..m; j=1,2…..n) (4)

Алгоритм і методи розв’язання транспортної задачі можна використати для знаходження розв’язку деяких економічних задач, які не мають нічого спільного з транспортуванням вантажів. У цьому разі величини тарифів перевезення сji мають різний зміст залежно від конкретної задачі. До таких задач належать наступні:

  • Оптимальне закріплення за верстатами операцій з обробки деталей. У них сji означає продуктивність праці.

  • Розміщення сільськогосподарських культур за ділянками землі різної врожайності.

  • Оптимальні призначення або проблема вибору.

  • Задача про скорочення виробництва із врахуванням загальних витрат на виготовлення і транспортування продукції

  • Збільшення продуктивності автомобільного транспорту за рахунок мінімізації порожнього пробігу

2 Основні теореми транспортної задачі.

Означення 1. Якщо у транспортної задачі виконується умова балансу

∑bj = ∑ai (5)

То задача називається закритою або збалансованою.

Означення 2. Планом транспортної задачі називається сукупність величин xji (i=1,2…..m; j=1,2…..n), який задовольняє умови обмеження (2) – (4).

Означення 3. Опорний план транспортної задачі називається не виродженим, якщо він містить N=m+n-1 додатних елементів xji

Означення 4. Якщо опорний план містить менше N<m+n-1 додатних елементів, то він називається виродженим.

Означення 5. Оптимальним планом транспортної задачі називають матрицю Х* , яка задовольняє умови задачі (2) – (4) і для якої цільова функція F набуває мінімального значення.

Теорема 1. (Необхідна і достатня умова існування розв’язку задачі ТЗ).

Транспортна задача має розв’язок тоді і тільки тоді, коли вона збалансована, тобто виконується умова (5).

Теорема 2. Для того щоб деякий план Х транспортної задачі був оптимальним необхідно і достатньо, щоб йому відповідала така система із m+n чисел ui (i=1,2…..m) vj ( j=1,2…..n) для якої виконуються умови

vj - ui = сji для xji>0

vj - ui ≤ сji для xji=0.

Означення 6. Числа vj та ui називаються потенціалами строк та стовпців.