
- •Тексты лекций теоретические основы электротехники
- •Введение
- •1. Резистивный элемент (резистор)
- •2. Индуктивный элемент (катушка индуктивности)
- •3. Емкостный элемент (конденсатор)
- •Схемы замещения источников электрической энергии
- •Литература
- •Контрольные вопросы и задачи
- •Топологические матрицы
- •Первый закон Кирхгофа
- •Литература
- •Контрольные вопросы и задачи
- •Действующее значение переменного тока
- •Синусоидально изменяющийся ток
- •Изображение синусоидальных эдс, напряжений и токов на плоскости декартовых координат
- •Векторное изображение синусоидально изменяющихся величин
- •Представление синусоидальных эдс, напряжений и токов комплексными числами
- •Действующее значение синусоидальных эдс, напряжений и токов
- •Литература
- •Контрольные вопросы и задачи
- •1. Резистор
- •2. Конденсатор
- •3. Катушка индуктивности
- •5. Последовательное соединение резистивного и емкостного элементов
- •6. Параллельное соединение резистивного и емкостного элементов
- •7. Параллельное соединение резистивного и индуктивного элементов
- •Литература
- •Контрольные вопросы и задачи
- •Протекающий через катушку индуктивности ток изменяется по закону а. Определить комплекс действующего значения напряжения на катушке. Ответ: .
- •Основы символического метода расчета цепей синусоидального тока
- •Специальные методы расчета
- •Метод контурных токов
- •Метод узловых потенциалов
- •Литература
- •Контрольные вопросы и задачи
- •Метод контурных токов в матричной форме
- •Метод узловых потенциалов в матричной форме
- •Литература
- •Контрольные вопросы и задачи
- •1. Резистор (идеальное активное сопротивление).
- •2. Катушка индуктивности (идеальная индуктивность)
- •3. Конденсатор (идеальная емкость)
- •Полная мощность
- •Комплексная мощность
- •Баланс мощностей
- •Литература
- •Контрольные вопросы и задачи
- •Резонанс в цепи с последовательно соединенными элементами (резонанс напряжений)
- •Резонанс в цепи с параллельно соединенными элементами (резонанс токов)
- •Резонанс в сложной цепи
- •Литература
- •Контрольные вопросы и задачи
- •Потенциальная диаграмма
- •Преобразование линейных электрических схем
- •1, Преобразование последовательно соединенных элементов
- •2 Преобразование параллельно соединенных ветвей
- •3. Взаимные преобразования “треугольник-звезда”
- •Литература
- •Контрольные вопросы и задачи
- •Воздушный (линейный) трансформатор
- •Литература
- •Контрольные вопросы и задачи
- •Матрицы сопротивлений и проводимостей для цепей со взаимной индукцией
- •Решение
- •Составление матричных соотношений при наличии ветвей с идеальными источниками
- •Литература
- •Контрольные вопросы и задачи
- •Метод наложения
- •Принцип взаимности
- •Линейные соотношения в линейных электрических цепях
- •Принцип компенсации
- •Литература
- •Контрольные вопросы и задачи
- •Теорема вариаций
- •Литература
- •Контрольные вопросы и задачи
- •Характеристическое сопротивление и коэффициент распространения симметричного четырехполюсника
- •Литература
- •Контрольные вопросы и задачи
- •Литература
- •Контрольные вопросы и задачи
- •Схемы соединения трехфазных систем
- •Соединение в звезду
- •Соединение в треугольник
- •Литература
- •Контрольные вопросы и задачи
- •Расчет симметричных режимов работы трехфазных систем
- •Расчет несимметричных режимов работы трехфазных систем
- •Литература
- •Контрольные вопросы и задачи
- •Мощность в трехфазных цепях
- •Измерение мощности в трехфазных цепях
- •Литература
- •Контрольные вопросы и задачи
- •Теория / тоэ / Лекция n 19 Метод симметричных составляющих
- •Свойства симметричных составляющих токов и напряжений различных последовательностей
- •Сопротивления симметричной трехфазной цепи для токов различных последовательностей
- •Применение метода симметричных составляющих для симметричных цепей
- •Литература
- •Контрольные вопросы и задачи
- •Выражение мощности через симметричные составляющие
- •Литература
- •Контрольные вопросы и задачи
- •Магнитное поле катушки с синусоидальным током
- •Круговое вращающееся магнитное поле двух- и трехфазной обмоток
- •Магнитное поле в электрической машине
- •Принцип действия асинхронного и синхронного двигателей
- •Литература
- •Контрольные вопросы
- •Характеристики несинусоидальных величин
- •Разложение периодических несинусоидальных кривых в ряд Фурье
- •Свойства периодических кривых, обладающих симметрией
- •Действующее значение периодической несинусоидальной переменной
- •Мощность в цепях периодического несинусоидального тока
- •Методика расчета линейных цепей при периодических
- •Литература
- •Контрольные вопросы
- •Особенности протекания несинусоидальных токов через пассивные элементы цепи
- •Высшие гармоники в трехфазных цепях
- •Литература
- •Контрольные вопросы
- •Классический метод расчета
- •Корни характеристического уравнения. Постоянная времени
- •Литература
- •Контрольные вопросы
- •Общая методика расчета переходных процессов классическим методом
- •Примеры расчета переходных процессов классическим методом
- •Литература
- •Контрольные вопросы
- •Переходные процессы при подключении последовательной r-l-c-цепи к источнику напряжения
- •Литература
- •Контрольные вопросы
- •Некоторые свойства изображений
- •Изображения производной и интеграла
- •Закон Ома в операторной форме
- •Законы Кирхгофа в операторной форме
- •Переход от изображений к оригиналам
- •Литература
- •Контрольные вопросы
- •Последовательность расчета переходных процессов операторным методом
- •Формулы включения
- •Сведение расчета переходного процесса к расчету с нулевыми начальными условиями
- •Переходная проводимость
- •Переходная функция по напряжению
- •Литература
- •Контрольные вопросы
- •Последовательность расчета с использованием интеграла Дюамеля
- •Метод переменных состояния
- •Методика составления уравнений состояния
- •Литература
- •Контрольные вопросы и задачи
- •Нелинейные электрические цепи постоянного тока
- •Параметры нелинейных резисторов
- •Методы расчета нелинейных электрических цепей постоянного тока
- •Графические методы расчета
- •Метод двух узлов
- •Литература
- •Контрольные вопросы и задачи
- •Аналитические методы расчета
- •Итерационные методы расчета
- •Литература
- •Контрольные вопросы и задачи
- •Характеристики ферромагнитных материалов
- •Магнитомягкие и магнитотвердые материалы
- •Статическая и дифференциальная магнитные проницаемости
- •Основные законы магнитных цепей
- •Литература
- •Контрольные вопросы и задачи
- •Регулярные методы расчета
- •1. Прямая” задача для неразветвленной магнитной цепи
- •2. “Прямая” задача для разветвленной магнитной цепи
- •Графические методы расчета
- •1. “Обратная” задача для неразветвленной магнитной цепи
- •2. “Обратная” задача для разветвленной магнитной цепи
- •Итерационные методы расчета
- •Статическая и дифференциальная индуктивности катушки с ферромагнитным сердечником
- •Литература
- •Контрольные вопросы и задачи
- •Особенности нелинейных цепей при переменных токах
- •Основные типы характеристик нелинейных элементов в цепях переменного тока
- •Графические методы расчета
- •Графический метод с использованием характеристик для мгновенных значений
- •Решение
- •Литература
- •Контрольные вопросы и задачи
- •Графический метод с использованием характеристик для действующих значений (метод эквивалентных синусоид)
- •Феррорезонансные явления
- •Аналитические методы расчета
- •Метод аналитической аппроксимации
- •Литература
- •Метод гармонического баланса
- •Литература
- •Катушка с ферромагнитным сердечником
- •Трансформатор с ферромагнитным сердечником
- •Литература
- •Контрольные вопросы и задачи
- •Особенности расчета переходных процессов в нелинейных цепях
- •Аналитические методы расчета
- •Метод условной линеаризации
- •Метод аналитической аппроксимации
- •Метод кусочно–линейной аппроксимации
- •Литература
- •Контрольные вопросы и задачи
- •1. Метод графического интегрирования
- •2. Метод изоклин
- •3. Метод фазовой плоскости
- •Численные методы расчета переходных процессов
- •Метод переменных состояния
- •Методика составления уравнений состояния на основе принципа наложения
- •Метод дискретных моделей
- •Литература
- •Контрольные вопросы
- •Уравнения однородной линии в стационарном режиме
- •Литература
- •Контрольные вопросы и задачи
- •Уравнения линии конечной длины
- •Уравнения длинной линии как четырехполюсника
- •Определение параметров длинной линии из опытов холостого хода и короткого замыкания
- •Линия без потерь
- •Стоячие волны в длинных линиях
- •Литература
- •Контрольные вопросы и задачи
- •Переходные процессы в цепях с распределенными параметрами
- •Уравнения переходных процессов в цепях с распределенными параметрами
- •Переходные процессы при включении на постоянное напряжение разомкнутой и замкнутой на конце линии
- •Литература
- •Контрольные вопросы и задачи
- •Правило удвоения волны
- •Литература
- •Контрольные вопросы и задачи
Особенности протекания несинусоидальных токов через пассивные элементы цепи
1
.
Резистор.
При
ток
через резистор (см. рис. 3)
,
где
.
Таким образом, на резистивном элементе несинусоидальные напряжение и ток совпадают по форме и подобны друг другу. Это позволяет на практике осциллографировать форму тока с помощью регистрации напряжения на шунте.
2. Конденсатор.
П
усть
напряжение на конденсаторе (рис. 4)
описывается гармоническим рядом
.
Коэффициент искажения кривой напряжения
|
(1) |
Ток через конденсатор
.
Тогда соответствующий кривой тока коэффициент искажения
|
(2) |
Сравнение
(1) и (2) показывает, что
,
т.е. конденсатор искажает форму кривой
тока по сравнению с напряжением, являясь
сглаживающим элементом для последнего.
Отмеченное наглядно иллюстрирует рис. 5, на котором форма кривой напряжения ближе к синусоиде, чем форма кривой тока.
3. Катушка индуктивности.
П
ринимая
во внимание соотношение между напряжением
и током для катушки индуктивности (рис.
6)
совершенно
аналогично можно показать, что в случае
индуктивного элемента
,
т.е. кривая напряжения искажена больше,
чем кривая тока. Этому случаю будет
соответствовать рис. 5 при взаимной
замене на нем кривых напряжения и тока.
Таким образом, катушка индуктивности
является сглаживающим элементом для
тока.
С учетом вышесказанного на практике, например в силовой полупроводниковой технике, для сглаживания выпрямленного напряжения применяют конденсаторные фильтры, а для тока – дроссели.
Высшие гармоники в трехфазных цепях
Напряжения
трехфазных источников энергии часто
бывают существенно несинусоидальными
(строго говоря, они несинусоидальны
всегда). При этом напряжения на фазах В
и С повторяют несинусоидальную кривую
напряжения
на фазе А со сдвигом на треть периода Т
основной гармоники:
.
Пусть для фазы А к-я гармоника напряжения
.
Тогда
с учетом, что
,
для к-х гармонических напряжений фаз В
и С соответственно можно записать:
Всю совокупность гармоник к от 0 до можно распределить по трем группам:
1.
-
гармоники данной группы образуют
симметричные системы напряжений,
последовательность которых соответствует
последовательности фаз первой гармоники,
т.е. они образуют симметричные системы
напряжений прямой последовательности.
Действительно,
и
.
2.
.
Для этих гармоник имеют место соотношения:
т.е. гармоники данной группы образуют симметричные системы напряжений обратной последовательности.
3.
.
Для этих гармоник справедливо
Таким образом, векторы напряжений данной группы во всех фазах в любой момент времени имеют одинаковые модули и направления, т.е. эти гармоники образуют системы нулевой последовательности.
Рассмотрим особенности работы трехфазных систем, обусловленные наличием гармоник, кратных трем.
1
.
Если фазы генератора соединены в
треугольник, то при несинусоидальных
фазных ЭДС сумма ЭДС, действующих в
контуре (см. рис. 7) не равна нулю, а
определяется гармониками, кратными
трем. Эти гармоники вызывают в замкнутом
треугольнике генератора ток, даже когда
его внешняя цепь разомкнута:
,
где
,
а
-
сопротивление фазы генератора для i-й
гармоники, кратной трем.
2. Если фазы генератора соединить в открытый треугольник (см. рис. 8), то на зажимах 1-2 будет иметь место напряжение, определяемое суммой ЭДС гармоник, кратных трем:
.
Таким образом, показание вольтметра в цепи на рис. 8
.
3. Независимо от способа соединения – в звезду или в треугольник – линейные напряжения не содержат гармоник, кратных трем.
При соединении в звезду это объясняется тем, что гармоники, кратные трем, как указывалось, образуют нулевую последовательность, ввиду чего исчезают из линейных напряжений, равных разности фазных.
При соединении в треугольник составляющие фазных ЭДС, кратные трем, не выявляются в линейных (фазных) напряжениях, так как компенсируются падениями напряжений на собственных сопротивлениях фаз генератора.
Таким образом, при соединении в треугольник напряжение генератора
и ток
.
В свою очередь при соединении в звезду
.
4. При симметричной нагрузке ток в нейтральном проводе определяется гармоническими, кратными трем, поскольку они образуют нулевую последовательность:
.
5. При соединении в звезду и отсутствии нейтрального провода фазные токи нагрузки не содержат гармоник, кратных трем (в соответствии с первым законом Кирхгофа сумма токов равна нулю, что невозможно при наличии этих гармоник). Соответственно нет этих гармоник и в фазных напряжениях нагрузки, связанных с токами законом Ома. Таким образом, при наличии гармоник, кратных трем, в фазных напряжениях генератора напряжение смещения нейтрали в симметричном режиме определяется этими гармониками
.