- •Інформаційні системи і технології у фінансових установах
- •Передмова
- •8. Системи масових електронних платежів населення з використанням пластикових карток та основи електронної комерції
- •9. Системи електронного обміну банківськими повідомленнями та фшансовимидокументами
- •10. Автоматизація обробки інформації в податковій системі україни
- •11. Розвиток інформаційних технологій в депозитарній діяльності, страхуванні та кредитних спілках
- •12. Системи захисту інформації у фінансових установах
- •1. Становлення та розвиток інформаційних систем у світовій практиці
- •1.1. Історія розвитку технічних засобів систем обробки інформації
- •1.2. Розвиток систем обробки економічної та фінансової інформації
- •1.3. Еволюція становлення інформаційних банківських систем у світі
- •1.4. Розвиток банківських систем і технологій в Україні
- •2. Основи теорії інформації. Інформаційні процеси як об'єкти автоматизованої обробки
- •2.1. Поняття інформації та інформаційного процесу
- •2.2. Особливості та характеристика інформаційних процесів у фінансових установах
- •2.3. Способи представлення фінансово-кредитної інформації: структуризація та формалізація
- •2.4. Класифікація інформації та створення нормативно-довідникового забезпечення
- •3. Основи теорії систем, інформаційних систем і технологій
- •3.1. Основи теорії систем, поняття системи
- •3.2. Види систем та їх характеристика
- •3.3. Системи обробки даних, інформаційні системи та їх класифікація
- •3.4. Основи системного підходу щодо створення інформаційних систем
- •4. Принципи та концепції побудови інформаційних систем у фінансових установах
- •4.1. Інформаційна система - основа підвищення ефективності та продуктивності праці фахівців фінансових установ
- •4.2. Принципи проектування та функціонування інформаційних систем у фінансових установах
- •4.3. Структура та характеристика складових частин інформаційних систем
- •4.4. Організація процесу проектування, розробки та впровадження інформаційних систем
- •5. Сучасні технологи створення автоматизованих інформаційних систем у фінансових установах
- •5.1. Телекомунікаційні інформаційні технології у фінансових установах
- •5.2. Технології обробки даних та основи проектування баз даних
- •5.3. Основи технології клієнт/сервер
- •5.4. Основи sql-технології
- •5.5. Технологічні особливості використання баз даних в мережах
- •Тема 6. Інформаційні системи і технології в банківській справі
- •6.1. Аналітичний погляд на стан розвитку автоматизованих банківських систем.
- •6.2. Схеми побудови автоматизованих банківських систем.
- •6.3. Структура та характеристика складових частин абс.
- •Особливості автоматизації процесу кредитування в банках.
- •Проблеми автоматизації функцій управління в абс
- •Тема 7. Автоматизовані системи міжбанківських розрахунків
- •7.1. Види організації систем міжбанківських розрахунків
- •7.2. Становлення та розвиток, правова основа функціонування платіжних систем в Україні.
- •7.3. Завдання, функції, структура та архітектура сеп
- •7.4. Принципи функціонування, типи файлів обміну та маршрутизація платежів в сеп нбу
- •7.5. Архітектура системи електронних міжбанківських переказів (семп) нбу
- •7.6. Моделі управління коррахунками комерційних банків в сеп
- •Тема 8. Системи масових електронних платежів населення з використанням пластикових карток та основи електронної комерції
- •8.1. Еволюція становлення та розвитку пластикових карток як інструменту безготівкових розрахунків
- •8.2. Основні поняття та класифікація пластикових платіжних карток
- •8.3. Концепції побудови платіжних систем та схеми здійснення розрахунків
- •8.4. Національна система масових електронних платежів
- •8.5. Особливості розвитку систем електронної комерції
- •9. Системи електронного обміну банківськими повідомленнями та фшансовимидокументами
- •Основи побудови та стандарти систем електронної пошти.
- •9.2. Електронна пошта нбу як засіб електронного обміну в банківській системі України
- •9.3. Системи обміну фінансовими документами між клієнтом та банком "Клієнт-банк"
- •9.4. Міжнародна міжбанківська телекомунікаційна мережа swift
- •9.4.1. Історія виникнення Співтовариства міжнародник фінансових телекомунікацій (Society for Worldwide International Financial Telecommunications)
- •9.4.2. Функціональне призначення та загальна характеристика системи
- •9.4.3. Організаційна структура s.W.I.F.T.
- •9.4.4. Формат повідомлення за стандартом мт-100
- •9.4.5. Архітектура та програмно-апаратне забезпечення
- •9.4.6. Маршрутизація та безпека проходження повідомлень у мережі
- •10. Автоматизація обробки інформації в податковій системі україни
- •10.1. Завдання автоматизації податкової системи з точки зору структури та інформаційних потоків.
- •10.3. Технологічні особливості формування та обробки податкової звітності в податкових органах
- •10.4. Автоматизація податкового обліку в комерційних банках
- •11. Розвиток інформаційних технологій в депозитарній діяльності, страхуванні та кредитних спілках
- •11.1. Особливості автоматизації діяльності на фондовому ринку.
- •11.2. Функціональне призначення, структура та характеристика аіс в страхуванні
- •11.3. Розвиток інформаційних систем і технологій в діяльності кредитних спілок
- •12. Системи захисту інформації у фінансових установах
- •12.1. Загрози безпеки аіс, причини виникнення загроз
- •12.2. Засоби та методи захисту інформації
- •12.3. Організація захисту інформації у фінансових установах
- •12.4. Основи функціонування систем криптографічного захисту інформації
9.4.5. Архітектура та програмно-апаратне забезпечення
У мережі S.W.I.F.T. використовується комунікаційний протокол Х.25, що забезпечує передачу даних між користувачами і керування центрами мережі. Формат переданих повідомлень відповідає рекомендаціям МККТТ Х.400. До складу мережі входять рис.9.12.:
Рис.9.ІІ.Технологія підготовки банківського повідомлення МТ-100.
процесор керування системою (System Control Processor, SCP);
маршрутні процесори (Slice Processors, SP);
регіональні процесори (Regional Processors, RP);
процесори зв'язку (Communications Processors, CP).
Масове підключення користувачів до системи S.W.I.F.T.'здійснюється за допомогою місцевих мереж доступу (S.W.I.F.T. Access Points, SAP), кожна з яких, може обслуговувати декількох абонентів по виділеному каналу зв 'язку, або по звичайній телефонній лінії загального користування.
Вибір конкретного способу підключення до порту SAP виконується, власне, користувачем.
• Перевагою виділених ліній є, можливість установки на них апаратури , для шифрування повідомлень, що неможливо при використанні телефонних каналів загального користування.
Місцева мережа процесорів зв'язку СР забезпечує з'єднання регіональних процесорів із мережею місцевого доступу. Крім того, СР зв'язують RP з іншими вузлами мережі S.W.I.F.T. Це, наприклад, дає можливість RP зв'язуватися зі своїм "хазяїном" - маршрутним процесором і в той же час одержувати повідомлення від інших SP, що входять у систему.
Регіональні процесори виконують функції входу/виходу в систему S.W.I.F.T по місцю розташування абонентів і фактично весь доступ користувачів до системи здійснюється за допомогою цих вузлів. Програмне забезпечення, що працює на RP, зв'язується з забезпеченням користувача для організації правильного і безпечного логічного підключення до мережі. Усі вхідні повідомлення перед передачею на наступний рівень (SP) перевіряються на правильність і відповідність стандартам S.W.I.F.T. Вихідні повідомлення зберігаються на відповідному RP, що забезпечує їхню передачу користувачам. Таким чином, кожний регіональний процесор виконує функції:
> керування протоколами передачі повідомлень;
> контроль правильності вхідних повідомлень;
> перевірка контрольних сум повідомлень;
> передача позитивних (АСК) і негативних (NAK) підтверджень
користувачам.
Усі користувачі відомі системі під визначеними адресами. Кожна така адреса належить відповідному маршрутному процесору (SP - "хазяїну") і відповідає своєму регіональному процесору ("основний" RP для цього вузла). У звичайному випадку вся кореспонденція, що передається на той або інший вузол, направляється на його основний RP.
Маршрутні процесори управляють власне передачею (маршрутизацією) і збереженням повідомлень. На SP лежить основне обчислювальне навантаження в мережі S.W.I.F.T. У початковій конфігурації системи є тільки два активних SP (із своїми дублерами), кожний із яких належить своєму центру керування системою. В міру збільшення графіка до системи підключаються додаткові SP для збільшення сумарної пропускної здатності. Основні функції SP полягають у наступному:
Рис. 9.12. архітектура мережі S WIFT.
керування маршрутизацією повідомлень, що передаються між користувачами через відповідні RP;
збереження з подвійним копіюванням усіх повідомлень і відповідних історій їхньої передачі;
передача на RP підтверджень збереження, що свідчать про запис повідомлення в базу даних;
створення загальних звітів (наприклад, звіту про недоставлені повідомлення);
обробка запитів на відновлення повідомлень із бази даних;
підтвердження доставки повідомлень;
попередження користувачів про неможливість передачі повідомлення;
загальна обробка системних повідомлень;
ведення системного архіву;
збір статистичної інформації і ведення рахунків.
Кожне вхідне повідомлення зберігається SP у двох екземплярах. SP також зберігає інформацію про всі спроби доставки повідомлення адресату (так звана "історія доставки"). Усе це істотно полегшує процес відновлення роботи після збою, а також аналіз причин виникнення тієї чи іншої помилки.
Процесор управління системою (SCP) керує роботою всієї мережі S.W.I.F.T. Він управляє всіма її компонентами і стежить за всіма спробами доступу до системи. Більшість його функцій виконуються 'автоматично, однак для виконання деяких операцій потрібно втручання людини. Серед основних "обов'язків" SCP можна відзначити наступні:
• збір інформації про роботу апаратури і програмного забез
печення S. W.I.F.T.;
• збір інформації про збої і помилки;
• керування процесом відновлення після збою;
• динамічний розподіл ресурсів системи в залежності від
конкретної ситуації;
• розсилання нового програмного забезпечення і баз даних.
В даний час існує два SCP в Америці і два - у Голландії. У будь-який момент часу активний тільки один із них, а інші три знаходяться в стані чекання, беззупинно збираючи дані про конфігурацію системи. Така організація забезпечує високу надійність роботи мережі навіть у випадку повної втрати зв'язку з одним із центрів керування.
