- •Вывод двойственной задачи
- •Анализ полученных решений
- •Пример 1. Определение нормированной стоимости и пример, показывающий ее смысл.
- •Пример 2. Объяснить, что означают столбцы «Допустимое увеличение» и «Допустимое уменьшение», привести пример изменения параметров в допустимых и вне допустимых пределов.
- •Пример 3. Значение теневой цены и привести пример.
- •Пример 4. Объяснить, что означают столбцы «Допустимое увеличение» и «Допустимое уменьшение» для ограничений, привести пример изменения параметров в допустимых и вне допустимых пределов.
- •Пример 5. Объяснить столбцы «Нижний предел», «Верхний предел», «Целевой результат»
Анализ полученных решений
Отчеты для прямой задачи
|
Microsoft Excel 12.0 Отчет по результатам |
|
|
|
|||
|
Рабочий лист: [прямая.xlsx]Лист1 |
|
|
|
|||
|
Отчет создан: 09.04.2010 17:23:00 |
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Целевая ячейка (Минимум) |
|
|
|
|
||
|
|
Ячейка |
Имя |
Исходное значение |
Результат |
|
|
|
|
$K$5 |
Затраты |
0 |
2586,25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Изменяемые ячейки |
|
|
|
|
||
|
|
Ячейка |
Имя |
Исходное значение |
Результат |
|
|
|
|
$B$3 |
Значение x11 |
0 |
30,80357143 |
|
|
|
|
$C$3 |
Значение x12 |
0 |
0 |
|
|
|
|
$D$3 |
Значение x13 |
0 |
4,583333333 |
|
|
|
|
$E$3 |
Значение x21 |
0 |
0 |
|
|
|
|
$F$3 |
Значение x22 |
0 |
0 |
|
|
|
|
$G$3 |
Значение x23 |
0 |
18,75 |
|
|
|
|
$H$3 |
Значение x31 |
0 |
0 |
|
|
|
|
$I$3 |
Значение x32 |
0 |
0 |
|
|
|
|
$J$3 |
Значение x33 |
0 |
16,66666667 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ограничения |
|
|
|
|
||
|
|
Ячейка |
Имя |
Значение |
Формула |
Статус |
Разница |
|
|
$K$9 |
Ограничение 1 Левая часть |
500 |
$K$9>=$M$9 |
связанное |
0 |
|
|
$K$10 |
Ограничение 2 Левая часть |
300 |
$K$10>=$M$10 |
связанное |
0 |
|
|
$K$11 |
Ограничение 3 Левая часть |
400 |
$K$11>=$M$11 |
связанное |
0 |
|
|
$K$12 |
Ограничение 4 Левая часть |
30,80357143 |
$K$12<=$M$12 |
не связан. |
19,19642857 |
|
|
$K$13 |
Ограничение 5 Левая часть |
0 |
$K$13<=$M$13 |
не связан. |
50 |
|
|
$K$14 |
Ограничение 6 Левая часть |
40 |
$K$14<=$M$14 |
связанное |
0 |
|
|
$B$3 |
Значение x11 |
30,80357143 |
$B$3>=0 |
не связан. |
30,80357143 |
|
|
$C$3 |
Значение x12 |
0 |
$C$3>=0 |
связанное |
0 |
|
|
$D$3 |
Значение x13 |
4,583333333 |
$D$3>=0 |
не связан. |
4,583333333 |
|
|
$E$3 |
Значение x21 |
0 |
$E$3>=0 |
связанное |
0 |
|
|
$F$3 |
Значение x22 |
0 |
$F$3>=0 |
связанное |
0 |
|
|
$G$3 |
Значение x23 |
18,75 |
$G$3>=0 |
не связан. |
18,75 |
|
|
$H$3 |
Значение x31 |
0 |
$H$3>=0 |
связанное |
0 |
|
|
$I$3 |
Значение x32 |
0 |
$I$3>=0 |
связанное |
0 |
|
|
$J$3 |
Значение x33 |
16,66666667 |
$J$3>=0 |
не связан. |
16,66666667 |
Ограничения 1,2,3 связанные. Это означает, что в оптимальном наборе переменных ограничения по плану выполняются полностью. Ограничение 6 на размер третьего участка выполняется полностью. Из Ограничений 4 и 5 видно, что участки 1 и 2 задействованы не полностью. Ограничения значений х11, х13, х23, х33 не связанные, значит эти переменные больше 0, а из связанности ограничений на значение х12, х21, х22, х31, х32, следует, что соответствующие переменные равны 0.
Минимальные суммарные затраты составляют 2586,25, и достигают, если структура посевов будет состоять из х11=30,80357143, х13=4,583333333, х23=18,75, х33=16,66666667.
В строках «Ограничение 1» - «Ограничение 3» указаны плановые ограничения по сборам, «Ограничение 4» - «Ограничение 6» ограничивают размеры участков. В столбце «Правая часть» указана правая часть этих ограничений, в столбце «Левая часть» указаны значения этих ограничений при оптимальном решении. Если значение в столбце «Разница» равно 0, то ресурс дефицитен, если равен положительному числу, то это остаток недефицитного ресурса.
|
Microsoft Excel 12.0 Отчет по устойчивости |
|
|
|
|
|||
|
Рабочий лист: [ghzvfZ.xlsx]Лист1 |
|
|
|
|
|||
|
Отчет создан: 09.04.2010 17:18:34 |
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Изменяемые ячейки |
|
|
|
|
|
||
|
|
|
|
Результ. |
Нормир. |
Целевой |
Допустимое |
Допустимое |
|
|
Ячейка |
Имя |
значение |
стоимость |
Коэффициент |
Увеличение |
Уменьшение |
|
|
$B$3 |
Значение x11 |
30,80357143 |
0 |
28 |
4,666666667 |
2,8 |
|
|
$C$3 |
Значение x12 |
0 |
4 |
24 |
1E+30 |
4 |
|
|
$D$3 |
Значение x13 |
4,583333333 |
0 |
27 |
3 |
5 |
|
|
$E$3 |
Значение x21 |
0 |
5 |
40 |
1E+30 |
5 |
|
|
$F$3 |
Значение x22 |
0 |
12,1875 |
45 |
1E+30 |
12,1875 |
|
|
$G$3 |
Значение x23 |
18,75 |
0 |
32 |
5 |
35 |
|
|
$H$3 |
Значение x31 |
0 |
6 |
48 |
1E+30 |
6 |
|
|
$I$3 |
Значение x32 |
0 |
11,5 |
64 |
1E+30 |
11,5 |
|
|
$J$3 |
Значение x33 |
16,66666667 |
0 |
60 |
9 |
63 |
|
|
|
|
|
|
|
|
|
|
Ограничения |
|
|
|
|
|
||
|
|
|
|
Результ. |
Теневая |
Ограничение |
Допустимое |
Допустимое |
|
|
Ячейка |
Имя |
значение |
Цена |
Правая часть |
Увеличение |
Уменьшение |
|
|
$K$9 |
Ограничение 1 Левая часть |
500 |
2 |
500 |
268,75 |
431,25 |
|
|
$K$10 |
Ограничение 2 Левая часть |
300 |
2,1875 |
300 |
73,33333333 |
300 |
|
|
$K$11 |
Ограничение 3 Левая часть |
400 |
2,625 |
400 |
110 |
400 |
|
|
$K$12 |
Ограничение 4 Левая часть |
30,80357143 |
0 |
50 |
1E+30 |
19,19642857 |
|
|
$K$13 |
Ограничение 5 Левая часть |
0 |
0 |
50 |
1E+30 |
50 |
|
|
$K$14 |
Ограничение 6 Левая часть |
40 |
-3 |
40 |
28,75 |
4,583333333 |
В первой таблице отчета в столбце «Результ. значение» находится найденное оптимальное решение (30,8; 0; 4,6; 0; 0; 18,6; 0; 0; 16,7).
Во второй таблице отчета в столбце «Результ. значение» отображаются левые части ограничений. В столбце «Ограничение Правая часть» располагаются правые части ограничений.
