
- •1.Структура и определение энергетической системы.
- •2.Особенности работы электроэнергетических систем.
- •3.Системы электроснабжения (Определение и особенности).
- •4.Этапы развития электроэнергетики в России.
- •5.Этапы развития электроэнергетики в Волгоградской области.
- •6.Динамика роста производства электроэнергии в России и в мире.
- •7.Административное-хозяйственное управление еэс России.
- •8.Основные задачи электроэнергетики.
- •9.Показатели качества электроэнергии.
- •10.Отклонение частоты (Определение и нормы по гост 13109-97)
- •11. Отклонения напряжения. (Определение и нормы по гост 13109-97)
- •12) Колебания напряжения (Определение и нормы по гост 13109-97)
- •14)Несимметрия напряжения (Определение и нормы по гост 13109-97)
- •15)Провал напряжения (Определение и нормы по гост 13109-97)
- •16)Временные перенапряжения (Определение и нормы по гост 13109-97)
- •17) Импульс напряжения(Определение и нормы по гост 13109-97)
- •19) Электроприемники I категории надежности электроснабжения.
- •20) Электроприемники II категории надежности электроснабжения
- •21) Электроприемники III категории надежности электроснабжения
- •22) Электроприемники категории особой надежности электроснабжения
- •23)Экономичность электроснабжения.
- •24.Статистическая и динамическая устойчивость.
- •25.Резерв мощности ээс (Виды и их определения).
- •26. Виды источников электроэнергии.
- •27)Фазы производства электроэнергии.
- •28.Классификация электростанций по основным признакам.
- •29.Классификация электростанций по виду теплового двигателя и по назначению.
- •30. График нагрузки энергисистемы.
- •31. Классификация электростанций по виду теплового двигателя и по назначению.
- •32.Основное электрооборудование электростанций (типы и назначение).
- •33.Типовая схема электростанции со сборными шинами генераторного напряжения.
- •34.Классификация турбогенераторов.
- •35.Классификация гидрогенераторов.
- •36.Конструкция синхронных генераторов.
- •37.Системы возбуждения синхронных генераторов.
- •38.Требования к системам возбуждения синхронных генераторов.
- •39)Электромашинные системы возбуждения.
- •40). Система самовозбуждения.
- •41)Бесщеточные системы возбуждения.
- •42)Пусковые режимы работы синхронных генераторов.
- •43)Начальный разворот синхронного генератора.
- •44)Синхронизация синхронных машин (способы и их определения)
- •45)Характеристики генераторов работающих на автономную сеть.
- •46)Характеристики холостого хода генератора.
- •48)Внешние характеристики синхронных генераторов.
- •49) Регулировочные характеристики синхронных генераторов
- •50)Условия выполнения синхронизации генераторов с цепью бесконечной.
- •51) Точная синхронизация синхронного генератора с сетью бесконечной мощности
- •52) Самосинхронизация синхронного генератора с сетью бесконечной мощности
- •53) Угловая характеристика синхронных генераторов
- •54) Распределительные устройства электростанций (классификация и основные характеристики)
- •55) Распределительные устройства с одной системой сборных шин (достоинства и недостатки)
- •56) Распределительные устройства с двумя системами сборных шин (достоинства и недостатки)
- •57) Распределительные устройства собственных нужд электростанций (виды и особенности)
- •58) Общие сведения об электроэнергетических системах
- •59) Линии электропередачи переменного тока
- •60) Линии электропередачи постоянного тока
- •61) Статические характеристики нагрузок систем электроснабжения
- •62) Измерение активной и реактивной мощности по схеме Арона
- •63) Поперечная компенсация реактивной мощности в системах электроснабжения
- •64) Продольная компенсация реактивной мощности в системах электроснабжения
- •65) Прямой и реакторный пуск асинхронного электродвигателя
- •66) Самозапуск электродвигателя
- •68) Проверка сети электроснабжения на самозапуск электродвигателя
- •69) Последовательность включения синхронного генератора на параллельную работу с электрической системой бесконечной мощности по способу самосинхронизации
- •71) Устройство автоматической самосинхронизации генератора с электрической системой бесконечной мощности
- •72) Автоматическое устройство точной синхронизации генератора с электрической системой бесконечной мощности
- •73) Система (сеть ) бесконечной мощности (определения и основные составляющие)
- •74) Регулирования напряжения в системах электроснабжения
- •75) Баланс активной и реактивной мощности в энергосистеме
23)Экономичность электроснабжения.
Экономичность и надежность системы электроснабжения достигается путем применения взаимного резервирования сетей предприятий и объединения питания промышленных, коммунальных и сельских потребителей. При сооружении на предприятиях собственных электростанций, главных понизительных подстанций и других источников питания учитываются близлежащие внезаводские потребители электроэнергии. Особенно это необходимо в районах, недостаточно охваченных энергосистемами.
Электрические сети и подстанции органически входят в общий комплекс предприятия, как и другие производственные сооружения и коммуникации. Поэтому они должны увязываться со строительной и технологической частями, очередностью строительства и общим генеральным планом предприятия.
Большой и все возрастающий удельный вес получают крупные энергоемкие предприятия черной и цветной металлургии, химии и другие, которые предъявляют высокие требования к их надежному и экономичному электроснабжению. Они характеризуются большими значениями суммарных установленных мощностей электроприемников, которые при дальнейшем развитии крупных комбинатов достигнут 1500—2000 МВт. Сильно возросли единичные мощности агрегатов.
Очень серьезные дополнительные требования к электроснабжению предъявляют электроприемники с резкопеременной циклически повторяющейся ударной нагрузкой и потребители, требующие особой бесперебойности питания при всех режимах системы электроснабжения. Система электроснабжения удовлетворяет требованиям экономичности если затраты на ее создание, эксплуатацию и развитие должны быть минимальны или минимальный срок окупаемости.
Технико-экономические расчеты (ТЭР) выполняется по предприятию в целом, так как основные доходы поступают от реализации продукции основного производства.
При выполнении учебных проектов экономические расчеты при проектировании СЭС предприятия ограничиваются сравнением технических решений. При сравнении вариантов необходимо, чтобы они были технически равноценны и экономически сопоставимы.
При равенстве показателей вариантов или незначительной разнице (5-10 %) следует отдавать предпочтение тому варианту, у которого лучше качественные показатели, который более перспективен с точки зрения развития предприятия (например, с более гибкой и удобной в эксплуатации схемой, новейшим оборудованием и т.п.).
24.Статистическая и динамическая устойчивость.
Статическая устойчивость. Запас статической устойчивости по напряжению ЭЭС в целом в нормальном режиме должен быть не менее 10 %. Запас по напряжению определяется для каждой из основных узловых точек ЭЭС по формуле, %:
где
Uн
— длительно поддерживаемое напряжение
в рассматриваемой узловой точке ЭЭС;
Uкр
— критическое напряжение в этой же
точке, при котором нарушается статическая
устойчивость работы ЭЭС. Запас статической
устойчивости ЭЭС в целом оценивается
по наименьшему запасу, полученному для
основных узловых точек (т.е. по наихудшей
точке). Если наихудшая точка известна
заранее, то достаточно рассчитать запас
для этой точки. Запас статической
устойчивости электропередачи, связывающей
электростанцию (или группу электростанций)
с энергосистемой, должен быть не менее
20 % в нормальном режиме и 8 % в
кратковременном послеаварийном режиме
(до вмешательства персонала в регулирование
режима). Запас статической устойчивости
по мощности определяется по формуле,
%:
где
Р — передаваемая мощность; Рпр
— предельная передаваемая мощность,
определенная из условий устойчивости
режима с учетом действия автоматических
устройств. Статическая устойчивость
работы ЭЭС в послеаварийных режимах
обеспечивается, как правило, за счет
мероприятий, не требующих дополнительных
капитальных вложений:
-кратковременного повышения напряжения на зажимах генераторов;
-быстрого снижения нагрузки электропередачи путем отключения части генераторов на электростанциях и т. п. Кроме того, существуют мероприятия, повышающие статическую устойчивость, но требующие некоторых капитальных вложений:
-применение быстродействующей системы возбуждения генераторов; -использование синхронных компенсаторов на промежуточных подстанциях; -использование статических тиристорных компенсаторов; -продольная емкостная компенсация индуктивного сопротивления электропередачи с помощью статических конденсаторов и т. п.
Практически все эти мероприятия позволяют повысить и динамическую устойчивость.
В эксплуатации, в тех случаях, когда это необходимо для предотвращения ограничения потребителей или потери гидроресурсов, допускается длительная работа электропередачи в нормальном режиме с запасом статической устойчивости, уменьшенным до 5—10 % в зависимости от роли электропередачи в энергосистеме и последствий возможного нарушения устойчивости. Динамическая устойчивость. Расчеты динамической устойчивости имеют своей целью выявление характера динамического перехода от одного режима энергосистемы к другому. Если при этом переходе ни одна мощная электростанция не выпадает из синхронной работы, то переход считается благополучным. Обычно проверка устойчивости энергосистемы производится при коротких замыканиях, происходящих в наиболее опасных (в смысле возможного нарушения устойчивости) точках энергосистемы при наибольшей возможной нагрузке электропередачи. Нарушение Д. у. наиболее вероятно вследствие КЗ в электрич. сетях. Осн. меры по повышению Д. у.: быстрое отключение участков с КЗ, автоматическое повторное включение ЛЭП, применение др. средств противоаварийной автоматики и быстродействующих систем возбуждения генераторов электростанций, использование электрич. и механич. торможения генераторов. Динамическая устойчивость должна обеспечиваться при наиболее характерных для данного элемента энергосистемы возмущениях и режимах, принятых за расчетные. В качестве расчетных в соответствии со сказанным следует рассматривать режимы нормальной работы, отвечающие наиболее длительно передаваемым мощностям по данной электропередаче, или режимы нагрузки, когда по электропередаче передается максимально возможная мощность данной электростанции или энергосистемы, если обоснована возможная длительная работа в таком режиме. Режимы, вызванные ремонтом оборудования, не рассматриваются, если нагрузка может быть снижена до величины, требующейся по условиям пропускной способности и условиям статической и динамической устойчивости. Даже если в качестве расчетного принимается однофазное или двухфазное короткое замыкание, необходимо принять меры, чтобы нарушение устойчивости при более тяжелых авариях (двухфазных на землю, трехфазных) было маловероятным. Однако применение всякого устройства для улучшения устойчивости должно быть оправдано как анализом его стоимости, так и выявлением убытка от данного вида аварии. Одновременно оценивается возможность и целесообразность пофазного повторного включения ЛЭП или ее работы без одной фазы. Согласно действующим нормативам по расчетам динамической устойчивости, она должна обеспечиваться в наиболее тяжелых точках энергосистемы при следующих видах коротких замыканий.