
- •1. Метод проекций
- •2. Точка в системе двух плоскостей проекций
- •3. Прямые общего положения
- •4. Взаимное положение прямых в пространстве.
- •14. Прямая, параллельная плоскости
- •16. Построение линии пересечения двух плоскостей.
- •30. Тень от точки
- •32. Способ обратных лучей
- •37. Построение перспективы объекта способом архитекторов
- •38. Построение теней при центральном проецировании
- •38. Тень от точки в перспективе
- •51.Для архитектурно-строительных чертежей, общественных и жилых зданий, используют следующие масштабы:
- •52. Линии чертежа
- •53. Выноски на строительных чертежах
- •56. Выполнение чертежей фасадов
- •57. Выполнение чертежей планов
16. Построение линии пересечения двух плоскостей.
Одной из основополагающих задач начертательной геометрии является задача на построение линии пересечения двух плоскостей общего положения.
Итак, даны две плоскости, заданные треугольниками АВС и DEF. Метод сводится к тому, что бы поочередно найти две точки пересечения двух ребер одного треугольника с плоскостью другого. Соединив эти точки мы получим линию пересечения двух плоскостей
напомню только механические действия:
- Заключим прямую АС во фронтально-проецирующую плоскость и перенесем по линиям связи на горизонтальную проекцию точки пересечения этой плоскости с прямыми DE и DF - точки 1 и 2 - На горизонтальной проекции соединим проекции точек 1 и 2 и найдем точку пересечения получившейся линии с горизонтальной проекцией той прямой, которую мы заключали во фронтально-проецирующую плоскость, в этом случае - с прямой AC. Мы получили точку M. - Заключим прямую BС во фронтально-проецирующую плоскость и перенесем по линиям связи на горизонтальную проекцию точки пересечения этой плоскости с прямыми EF и DF - точки 3 и 4 Соединим их горизонтальные проекции и получим точку пересечения этой прямой с прямой ВС - точку N. - Соединив точки M и N мы получим линию пересечения плоскостей заданных треугольниками. По сути линия пересечения уже найдена. - Осталось лишь определить видимость ребер треугольников. Это делается методом конкурирующих точек.
Определение видимости прямых относительно плоскостей проекций
Для определения видимости прямых относительно плоскостей проекции используются конкурирующие точки. Рассмотрим комплексный чертеж скрещивающихся прямых а и b (рис. 4.1 и рис. 4.2). Определим, какая из прямых расположена выше другой (относительно плоскости p1) или ближе другой к наблюдателю (относительно плоскости p2). Для этого необходимо проанализировать положение конкурирующих точек С и D, принадлежащих этим прямым. Из рис. 4.1 следует, что при взгляде сверху по указанной стрелке С2 выше D2 относительно p1. Следовательно, точка С1, принадлежащая прямой а, будет видима, а точка D2, принадлежащая прямой b, (D1 – показана в скобках) будет не видима.
Из двух конкурирующих точек M и N, принадлежащих скрещивающимся прямым а и b (рис. 4.2), относительно плоскости p2, видимой будет точка М2, так как М1 расположена ближе к наблюдателю, что видно при взгляде спереди по указанной стрелке, а точка N2 будет не видима, поэтому она показана в скобках.
|
|
Понятие конкурирующих точек используется в решении позиционных задач, когда требуется определить видимость, то есть положение прямых между собой и относительно зрителя.
29. Тени в ортогональных и аксонометрических проекциях. Общие сведения. Тени собственные и падающие. Тень от точки, прямой и плоской фигуры. Способы лучевых сечений и обратных лучей. Тени гранных поверхностей. Построение границы собственной тени на конической и цилиндрической поверхностях и на сфере. Выбор светового луча в аксонометрии. Построение собственных и падающих теней на аксонометрическом изображении.
На архитектурных чертежах, для придания им большей наглядности, строят тени, благодаря которым получают более полное представление о рельефе здания, его отдельных объемах и деталях. Кроме того, построение теней на ортогональных проекциях уменьшает их основной недостаток – малую наглядность. Светотень как бы компенсирует отсутствие третьего измерения (на плане – высоты, а на фасаде – глубины). Тени также дают возможность лучше представить на чертеже взаимное расположение отдельных элементов, объемно-пространственную композицию здания. Различают собственные и падающие тени. Собственные тени – это затемненная часть освещенного предмета или это тени, которые получаются на неосвещенной поверхности самого тела. Линия, разделяющая на поверхности предмета освещенную и затененную части называется контуром собственной тени (на рис. 1(а, б) это линия ABCD на поверхности сферы). В свою очередь, данный предмет отбрасывает так называемые падающие тени на плоскости и тела, находящиеся позади него. Внешняя граница падающей тени называется контуром падающей тени На архитектурно-строительных чертежах тени от изображаемого объекта могут быть построены как от искусственного источника освещения (лампа, прожектор, фонарь и т.п.) так и от естественного (солнце), при этом считается, что свет распространяется прямолинейно.