
- •2. Влияние начальных параметров на тепловую экономичность цикла.
- •3. Регенеративный подогрев питательной воды на тэс без промежуточного подогрева пара.
- •4. Влияние температуры питательной воды и числа регенеративных подогревателей на кпд тэс.
- •5. Методы оптимального распределения регенеративного подогрева питательной воды турбоустановки без промперегрева.
- •6.Промежуточный перегрев пара на тэс и его влияние на тепловую экономичность
- •7.Регенеративный подогрев питательной воды турбоустановки с промперегревом пара. Методы оптимального распределения подогрева питательной воды
- •8.Расход пара на турбоустановку с регенеративным подогревом питательной воды
- •9. Типы подогревателей и схемы их включения
- •10. Назначение и схемы включения охладителей дренажа. Схемы слива дренажа от регенеративных подогревателей
- •11.Назначение пароохладителей, схемы их включения.
- •1 2.Назначение и принцип работы деаэратора. Типы деаэраторов и схемы их включения на современных тэс.
- •13.Расчёт расходов пара на подогреватели.
- •14.Питательные установки блоков. Назначение и схемы включения отдельных элементов.
- •15. Кавитация и помпаж в питательных насосах.
- •16. Типы привода питательных насосов и схемы включения приводных турбин.
- •17. Схемы включения турбоприводов. Расчёт расхода пара на турбопривод.
- •18. Схемы включения конденсатных насосов.
- •19.Основные положения методики расчета схем тэс и аэс.
- •20.21Тепловая схема одноконтурной/ двухконтурной аэс и её показатели тепловой экономичности.
- •22.Схемы теплоэлектроцентралей и их показатели тепловой экономичности.
- •23. Распределения пара на турбоустановку между электроэнергией и теплом.
- •24. Перегрев пара на аэс
- •25. Отпуск теплоты на отопление, вентиляцию и горячее водоснабжение.
- •26. Схемы включения сетевых подогревательных установок. Понятие α тэц
- •27. Сетевая подогревательная установка и расчёт расходов пара на сетевые подогреватели.
- •28. Способы регулирования отпуска теплоты от тэц
- •29.Отпуск теплоты промышленным потребителям
- •30. Сетевые подогреватели, особенности конструкции.
- •31. Маневренность и мобильность оборудования тэс.
- •32. Контуры циркуляции аэс с ввэр и рбмк.
- •34. Энергетические характеристики турбоустановок.
- •3 5. Элементы схем главных паропроводов блочных тэс и аэс. Назначение отдельных элементов схемы.
- •36. Конструктивные характеристики регенеративных и сетевых подогревателей. Защита пвд, регулирующая, запорная и предохранительная арматура.
- •37.Топливное хозяйство тэс.
- •38.Вспомогательное оборудование котельного отделения тэс, тягодутьевые установки.
- •39. Золошлакоудаление на тэс.
- •40. Техническое водоснабжение тэс и аэс.
- •41. Принципиальные схемы гту и пгу.
- •42.Компановка главного корпуса тэс. Генеральный план тэс.
Схема простейшей КЭС и её показатели тепловой экономичности. Способы повышения тепловой экономичности ТЭС.
Способы повышения тепловой экономичности:
1
2. Влияние начальных параметров на тепловую экономичность цикла.
При увеличении t0 средний температурный уровень подвода теплоты в цикле увеличивается => термический КПД ηt непрерывно возрастает.
Тем-ра перегретого пара t0 может изменяться при p0=const, с возрастанием тем-ры перегрева КПД непрерывно повышается. Для насыщенного пара увеличение ηt происходит только до давления пара, равного примерно 16.5 МПа (до tн ≈350°С). При дальнейшем увеличении параметров насыщенного пара КПД даже падает, это связано с тем, что влияние давления на термич-ий КПД цикла неоднозначно.
Повышение t0 уменьшает влажность пара на выходе из турбины => снижаются потери в проточной части => улучшаются условия работы лопаток. Влага, содержащаяся в паровом потоке вызывает эрозийный износ лопаток. Влажность пара должна быть не выше 14%.
Максимально допустимое значение t0 зависит от свойств металлов теплопередающих поверхностей оборудования. Для сталей перлитного класса t0 ≈ 540°С, для сталей аустенитного класса t0 ≈ 600-650°С.
С увеличением давления при t0=const, конечная влажность пара возрастает.
Т.к. увеличение тем-ры t0 приводит к уменьшению влажности пара ωк, а повышение дав-я – к её увелич-ю, очевидно, что возможно такое совместное изменение этих величин, при котором конечная влаж-ть пара будет оставаться одной и той же. Начальные дав-е и тем-ра, обеспечивающие одно и то же значение конечной влажности пара, называют сопряженными начальными параметрами.
t0=540°C
p0=13-14 МПа
Влияние конечных параметров пара на тепловую экономичность
Заменим цикл Ренкина равноэкономичным циклом Карно:
ηt = 1-Tк/T0экв.
Индексами
«к» и «н» обозначены приращения ηt
при соответствующем изменении конечной
и начальной тем-р цикла. При одинаковых
приращениях
и
абсолютное знач-е
превышает знач-е
в
/
раз.
Т.о. даже небольшое снижение должно оказывать существенное влияние на тепловую эконом-ть устан-ки.
При изменении pк изменяются потери с выходной скоростью, внутр-й относит-ый КПД последней ступени турбины, расход пара в конден-р и конечная влаж-ть пара => изменение ηi и общей мощн-ти устан-ки.
Сначала с понижением pк мощность растет, но затем, достигнув максимума, снижается. Это связано с тем, что при некотором давлении в минимальном сечении каналов лопаточной решетки скорость пара принимает критическое значение.
3. Регенеративный подогрев питательной воды на тэс без промежуточного подогрева пара.
Регенерат-ый подогрев пит. воды осуществляется потоками пара, отбираемыми из проточной части турбины. Греющий пар, совершив работу в турбине, конденсируется затем в подогревателях. Теплота, отведенная с этими потоками пара из проточной части турбины, возвращается в котел, как бы регенерируется.
Р
егенерат-ый
подогрев может повысить КПД установки
на 10-12% и поэтому применяется на всех
современных станциях. Современные
турбоустановки имеют 7-9 регенер-х отборов
пара и соответствующее число последовательно
включенных подогревателей.
h
0
и hпк
–
энтальпии пара перед турбиной и на входе
в конденсатор, кДж/кг; hк
– энтальпия конденсата; hр
– энтальпия пара отбора; αр,
αк
– доля общего расхода пара на турбину,
отбираемая в отбор и поступающая в
конденсатор соответственно.
Чем больше энергетический коэффициент регенерации Ар (т.е. суммарная рабрта потоков пара, поступающих в отборы, по сравнению с работой конденсационного потока), тем выше эффект от применения регенеративного подогрева. Когда отборы на регенерацию отсутствуют (αр=0), ηр=ηк. Аналогичный результат будет, если при одном отборе подогрев воды осуществляется свежим паром, так как при этом h0-hj=h0-h0=0 и значение Ар также равно нулю. Таким образом нет смысла осуществлять подогрев притательной воды свежим паром, так как он не может изменить тепловую экономичность установки.