
- •1.1 Расчет напряжений растяжения………………….. …..…8
- •1.2 Расчёт изгибающих моментов………………...……… ...13
- •4. Крутильные колебания роторов гтд………...………………..90
- •8.3.2. Планетарные редукторы………………………………..….138
- •8.5.1 Зубчатые цилиндрические и конические колеса……......…146
- •8.6. Измерители крутящего момента……......…..….…....156
- •9.1.1. Конструкция нерегулируемых дозвуковых выходных устройств………………………………………………………………...….......172
- •Введение
- •1. Расчёт лопаток компрессоров и турбин на прочность
- •1.1 Расчет напряжений растяжения
- •1.2 Расчёт изгибающих моментов
- •1.2.1 Определение изгибающих моментов от действия центробежных сил
- •1.2.2 Определение изгибающих моментов от центробежных сил методом конечных разностей
- •1..2.3. Расчёт изгибающих моментов в лопатках от действия газовых сил
- •1.3. Определение напряжений изгиба, суммарных напряжений и запасов прочности
- •1.4. Расчет на прочность замков крепления рабочих лопаток
- •1.4.1. Расчёт крепления лопатки типа «ласточкин хвост»
- •1.4.2 Расчёт крепления лопатки замком типа «ёлочка»
- •1.5. Контрольные вопросы
- •2. Колебание лопаток
- •2.1 Свободные колебания стержня постоянного поперечного сечения
- •2.2. Расчет первой собственной частоты колебаний лопатки переменного сечения
- •2.3. Определение частоты колебания лопатки в поле центробежных сил
- •2.4. Резонансные режимы и способы борьбы с опасными колебаниями
- •2.5 Контрольные вопросы
- •3. Критические скорости вращения роторов
- •3.1. Расчет критической скорости вращения невесомого вала с диском
- •3.2 Устойчивость быстровращающихся гладких валов
- •3.3. Критические скорости вращения реальных роторов
- •3.4. Влияние гироскопического момента на критические скорости вращеня
- •3.4.1 Расчет критической скорости вращения ротора с учётом гироскопического момента
- •3.5. Расчет крических скоростей вращения многодисковых роторов
- •3.6. Приведение сложных изгибных систем к эквивалентным
- •3.7. Контрольные вопросы
- •4. Крутильные колебания роторов гтд
- •4.1. Свободные крутильные колебания двухмассовой системы
- •4.2. Свободные крутильные колебания многомассовых систем
- •4.3. Приведение реальной крутильной системы к эквивалентной расчетной
- •4.4. Вынуждающие моменты и резонанс
- •4.5. Контрольные вопросы
- •5.Вибрационные перегрузки двигателей
- •5.1. Балансировка роторов гтд
- •5.2. Контрольные вопросы
- •6. Расчёт на прочность дисков роторов гтд
- •6.2 Расчет равнопрочного диска
- •6.3. Расчет на прочность вращающегося диска произвольного профиля
- •6.4. Контрольные вопросы
- •7. Колебания дисков
- •7.1 Контрольные вопросы
- •8. Редукторы гтд
- •8.1. Требование к редукторам
- •8.2. Классификация редукторов
- •8.3. Редукторы для привода одиночного винта
- •8.3.1 Простые редукторы
- •8.3.2. Планетарные редукторы
- •8.3.3. Двухступенчатые редукторы для привода одиночного винта
- •8.3.4. Замкнутые дифференциальные редукторы для привода одиночного винта
- •8.4. Редукторы для привода двух соосных винтов
- •8.5. Конструкция редукторов гтд
- •8.5.1 Зубчатые цилиндрические и конические колеса
- •8.5.2. Водила планетарных передач
- •8.5.3. Корпусы редукторов
- •8.5.4. Валы и их опоры
- •8.5.5. Применяемые материалы
- •8.6. Измерители крутящего момента
- •Контрольные вопросы
- •9. Выходные и ревеверсивные устройства
- •9.1.1. Конструкция нерегулируемых дозвуковых выходных устройств
- •9.3. Сверзвуковые регулируемые выходные устройства
- •9.4. Устройства для реверса и девиации тяги
- •9.5. Методы снижения шума
- •9.5.1 Шумоглушащие сопла
- •9.5.2 Снижение шума компрессора
- •9.5.3 Аэродромные глушители шума
- •Глушители шума выхлопа двигателя
- •Глушители шума на входе в двигатель
- •9.6. Контрольные вопросы
- •Заключение
- •Библиографический список
- •660014, Г. Красноярск, просп. Им. Газ. «Красноярский рабочий»,31
- •660028 Г. Красноярск . Ул. Л Кецховели, 75а-223.
2.3. Определение частоты колебания лопатки в поле центробежных сил
При вращении ротора на лопатку действует центробежная сила, которая повышает частоту собственных колебаний. Центробежная сила стремится выпрямить ось лопатки, отклоняющуюся при колебаниях.
Центробежная сила приводит к повышению жёсткости лопатки, как натяжение струны в музыкальных инструментах. Влияние центробежной силы возрастает с увеличением закрутки лопатки, угла установки. Бандажная полка также повышает влияние центробежной силы на увеличение собственной частоты колебаний.
Кроме того, в конструкциях, где хвостовик лопатки устанавливается свободно в диске, центробежная сила увеличивает защемление хвостовика лопатки и тем самым повышает частоту собственных колебаний.
Определение частоты колебаний лопатки в поле центробежных сил проведем энергетическим методом. Рассмотрим колебание лопаток с жесткой заделкой в ободе диска в плоскости наименьшей жесткости.
Лопатку
представим как упругую невесомую балку
с приведенной массой на конце (рис.2.8).
К массе приложена центробежная сила
При
свободных колебаниях сумма потенциальной
и
кинетической
энергий
должна оставаться постоянной
(2.56)
Рис.2.8. К расчету частоты
колебаний лопатки в поле
центробежных сил
В
процессе колебаний приведенная масса
на упругой балке отклонится на угол
,
при этом центробежная сила совершает
работу. Пренебрегаем ввиду малости
окружной составляющей центробежной
силы
,
получим максимальную работу центробежных
сил при максимальном прогибе
(2.57)
где,
ввиду малости
можно принять
,
а
,
-
максимальный прогиб и угол наклона
лопатки.
Примем, что форма упругой линии лопатки близка к форме упругой линии балки, нагруженной сосредоточенной на конце силой Р, то потенциальная энергия деформации стержня будет равна этой работе
(2.58)
Прогиб от силы Р определится
(2.59)
где
- коэффициент жесткости.
Подставим
значения
из равенства (2.59)в зависимость (2.58),
получим
.
(2.60)
Кинетическая энергия соответствующая максимальной скорости, равна
(2.61)
При колебаниях масса перемешается по гармоническому закону
(2.62)
-
круговая частота лопатки, находящейся
в поле центробежных сил.
Дифференцируя уравнения (2.62), получим
(2.63)
Подставим (2.63) в (2.61) получим зависимость
(2.64)
Подставляем полученные выражения для потенциальной и кинетической энергии в (2.56), получим
(2.65)
откуда
(2.66)
Подставим в (2.66) зависимости для прогиба (2.59) и угла наклона от силы Р
и
учитывая, что
получим
(2.67)
Обозначим
,
тогда (2.67) запишется
,
(2.68)
где
круговая частота колебаний неподвижной
лопатки
Линейные частоты связаны с круговыми соотношениями
Частота
собственных колебаний лопатки с учётом
центробежной силы
определяется
частотой собственных колебаний при
неподвижном роторе
и
частоты колебаний идеально гибкой
лопатки находящейся в поле центробежных
сил
(2.69)
Расчёт частот собственных колебаний лопатки с учётом всех факторов сложен, поэтому рассмотрим полуэмпирические зависимости.
Для расчёта первой собственной частоты колебаний лопатки коэффициент В определяется:
- лопатка с постоянным по длине сечением
- лопатка с переменным по длине сечением
- лопатка закрученная, переменного сечения
где
-
средний по длине угол закрутки лопатки,
-
средний радиус лопатки;
-
длина лопатки.