
- •1.Физиология растений как наука
- •64 И 55.Взаимосвязь поглощения элементов мин питания. Растворы
- •10.Строение растительной клетки
- •10 Клетка как открытая живая система
- •11.Фотосинтез как основа продукционного процесса.
- •44 И 40..Биологическая роль дыхания
- •70.Рост и развитие растений
- •44.Зависимость дыхания от внешних условий
- •15.Пластидная система в клетке растения
- •41.Особенности водной среды обитания.
- •5.Структура и функции клеточной стенки
- •46.Участие аппарата гольджи в синтезе
- •14.Нарушения обмена в условиях дефицита
- •72.Радиация и устойчивость растений
- •49.Ростовые и тургорные движения
- •11.Общее уравнение фотосинтеза.
- •16.Движущие силы водного тока в системе
- •69.Засоление почв и группы растений
- •22.Пигментные системы растений
- •42.Компоненты этц фотосинтеза. Фотосистемы
- •60.Газоустойчивость растений
- •74 И 71.Холодо- и морозоустойчивость.
46.Участие аппарата гольджи в синтезе
Аппарат Гольджи является компонентом всех эукариотических клеток. Он представляет собой важнейшую мембранную органеллу, управляющую процессами внутриклеточного транспорта. В растительных клетках АГ представлен диктиосомами, везикулами и межцистерными образованиями. Уплощенные цистерны – диктиосомы расположены пачками по несколько штук. В диктиосомах АГ осуществляется накопление и мембранная «упаковка» соединений, необходимых для синтеза полимеров клеточной стенки и различных растительных слизей. С помощью везикул Гольджи углеводные компоненты доставляются к плазмалемме. Мембрана пузырьков встраивается в плазмалемму, способствуя ее росту и обновлению. Секретируемые вещества оказываются в клеточной стенке. Мембраны АГ являются связующим звеном между мембранами эндоплазматического ретикула и плазмаллемой.
44.ХЕМИОСМОТИЧЕСКАЯ ГИПОТЕЗА. МЕХАНИЗМЫ ДЫХАНИЯ.
В 1966 Митчелл сформулировал хемиосмотическую гипотезу – радикальное решение проблемы соединения энергии в механизмах окислительного и фотосинтетического фосфорилирования. Он предположил, что цепь реакций, осуществляющихся в процессе дыхания, представляет собой последовательность сменяющих друг друга протонов и электронов. Белковые носители таким образом организованы во внутренней митохондриальной мембране, что переносят протоны через мембрану. Поскольку митохондриальная мембрана не допускает пассивного тока протонов, в процессе дыхания генерируется электрохимическая разность потенциалов – мембранный потенциал. Под ее действием протоны с внешней поверхности стремятся назад во внутриклеточное пространство. Именно этот поток протонов, который можно сравнить с электрическим током в батарее, и выполняет всю работу. Механизмы регуляции дыхания. Дыхание – один из наиболее тонко регулируемых процессов. Регуляция дыхания происходит прежде всего на клеточном уровне, механизмы ее различны. Лучше других изучен механизм регуляции активности ферментов. Современное представление о дыхании как саморегулируемом процессе позволяет объяснить знаменитый эффект, открытый Пастером. Заметил, что в присутствии кислорода воздуха сильно уменьшается скорость расходования глюкозы в клетках, и наоборот, в анаэробных условиях клетки потребляют в 6 раз больше глюкозы. Другой механизм регуляции на клеточном уровне связан с конформационными изменениями мембран.
14.Нарушения обмена в условиях дефицита
Дефицит влаги в растениях действует на такие процессы, как поглощение воды, корневое давление, транспирация, дыхание и другие. Изменяя обмен веществ, недостаток воды влияет на продуктивность, вкус плодов и т.д. Длительный водный дефицит снижает интенсивность фотосинтеза. Влияние водного дефицита на метаболические процессы в значительной мере зависит от длительности его действия. Засухоустойчивость — способность растений переносить длительные засушливые периоды, значительный водный дефицит, обезвоживание клеток, тканей и органов. При этом ущерб урожая зависит от продолжительности засухи и ее напряженности. Чувствительным к недостатку влаги является процесс роста, темпы которого при нарастающем недостатке влаги снижаются значительно раньше фотосинтеза и дыхания. Ростовые процессы задерживаются даже после восстановления водоснабжения. Засухоустойчивость определяется способностью растительного организма как можно меньше изменять процессы обмена веществ в условиях недостаточного водоснабжения. Засухоустойчивые виды и сорта имеют биохимические механизмы защиты, способствующие в условиях засухи поддерживать достаточно высокий уровень физиологических процессов растений. Эти механизмы предотвращают обезвоживание клетки за счет накопления низкомолекулярных гидрофильных белков, увеличения моносахаров; способствуют восстановлению нарушенных структур цитоплазмы при условии сохранения от повреждения генетического аппарата клеток. Защита молекул ДНК от вредного действия обезвоживания обеспечивается частичным переводом их в пассивное состояние с помощью ядерных белков или, возможно, специальных стрессовых белков.
.27сУТОЧНАЯ И СЕЗОННАЯ ПЕРИОДИЧНОСТЬ РОСТА
Влияние факторов внешней среды на рост растений. На рост растений оказывают влияние продукты жизнедеятельности других растений (явление аллелопатии), микроорганизмов (антибиотики, регуляторы роста) и факторы внешней среды. Свет. Растения воспринимают свет не только как источник энергии, но и в качестве сигнала, характеризующего условия среды. В клетках имеются рецепторные молекулы фитохрома, опосредующие действие света на морфогенез. Температура. Различают три основные температурные точки: минимальная температура, при которой начинается рост, оптимальная – наиболее благоприятная для роста и максимальная, при которой рост прекращается. Водный режим. Недостаточное снабжение растений водой задерживает рост побегов и кратковременно стимулирует с последующим торможением рост корней. Минеральное питание. Для нормального роста необходимо достаточное снабжение всеми питательными элементами. Избыток азота стимулирует рост вегетативной массы, но замедляет процессы дифференцировки и формирование цветков. Эмбриональный этап начинается с образования зиготы и до созревания семени. Зигота образуется в результате слияния спермия с яйцеклеткой зародышева мешка, в нем происходит двойное оплодотворение. В зиготе происходит биосинтез РНК, белков, она начинает делится дроблением. Ювенильный этап начинает с прорастания семян или органов вегетативного размножения и характеризуется накоплением вегетативной массы. Растения на этом этапе не способны к половому размножению. Этап зрелости и размножения. Происходит формирование генеративных органов и образование плодов. У растений выделяют половое, бесполое и вегетативное размножение. При половом размножении новый организм появляется в результате слияния половых клеток – гамет. Бесполое размножение характерно для споровых растений, у которых чередуются два поколения – бесполое диплоидное и половое гаплоидное. При бесполом размножении новый организм развивается из спор. Вегетативным размножением называют воспроизведение растений из вегетативных частей растения (клубней, луковиц, отводок). Инициация перехода к цветению осуществляется под действием температуры, чередования дня и ночи (фотопериодизм) или эндогенных факторов, обусловленных возрастом растения. Оплодотворение делят на три фазы: а) опыление, б) прорастание пыльцы и рост пыльцевой трубки в тканях пестика, в) собственно оплодотворение, то есть образование зиготы. Зигота образуется при слиянии спермия пыльцевой трубки (мужской гаметофит) с яйцеклеткой зародышевого мешка (женский гаметофит). В зародышевом мешке происходит двойное оплодотворение, так как второй спермий соединяется с вторичным диплоидным ядром центральной клетки зародышевого мешка. Зародыши проходят ряд последовательных фаз развития. На последнем этапе созревания семена теряют значительное количество воды и переходят в состояние покоя, когда в тканях уменьшается содержание стимуляторов роста и увеличивается количество ингибитора роста абсцизовой кислоты. Этап старости и отмирания включает в себя период от полного прекращения плодоношения до смерти организма. Для него характерно прогрессирующее ослабление жизнедеятельности. Однолетние растения погибают целиком. У многолетних трав ежегодно полностью отмирает надземная часть, а корневая система остается жизнеспособной. У многих растений стареют и опадают ранее образовавшиеся листья. У листопадных деревьев осенью одновременно стареют и опадают все листья.
73.ГОРМОНАЛЬНАЯ СИСТЕМА РАСТЕНИЙ.
Фитогормоны - биологически активные вещества, образующиеся в активно растущих тканях растений и регулирующие их рост и развитие. К фитогормонам относятся ауксины, гиббереллины и цитокинины, а также ингибиторы роста. К активаторам роста относят ауксины, цитокинины, гиббереллины. К ингибиторам относят абсцизины и этилен. Общие свойства: 1) они являются высокоэффективными регуляторами физиологических процессов в растениях, 2) действуют в крайне низких концентрациях, 3) с помощью них одни типы клеток и тканей регулируют физиологические процессы в других типах клетках и тканей растений. Ауксины. Главным представителем ауксинов в растениях является индолил-3-уксусная кислота (ИУК). Она синтезируется в верхушке побега. Ауксин стимулирует деление и растяжение клеток, необходим для образования проводящих пучков и корней. Много цитокининов в развивающихся семенах и плодах. Цитокинины индуцируют в присутствии ауксина деление клеток, активируют дифференциацию пластид, повышают активность АТФ-синтетазы, способствуют выходу почек, семян и клубней из состояния покоя, предотвращают распад хлорофилла и деградацию клеточных органелл. Абсцизовая кислота синтезируется в листьях и корневом чехлике. Абсцизовая кислота (АБК) тормозит рост растений и является антагонистом стимуляторов роста. АБК ускоряет распад нуклеиновых кислот, белков, хлорофилла, ингибирует мембранную протонную помпу. АБК накапливается в клетках при неблагоприятных условиях внешней среды, стареющих листьях, покоящихся семенах, в отделительном слое черешков листьев и плодоножек. Газ этилен накапливается в стареющих листьях и созревающих плодах. Он ингибирует рост стеблей и листьев. Удлинение стебля тормозится из-за изменения направления роста клеток с продольного на поперечное, что приводит к утолщению стебля. Обработка этиленом индуцирует корнеобразование, ускоряет созревание плодов, прорастание пыльцы, семян, клубней и луковиц.