
- •1.Физиология растений как наука
- •64 И 55.Взаимосвязь поглощения элементов мин питания. Растворы
- •10.Строение растительной клетки
- •10 Клетка как открытая живая система
- •11.Фотосинтез как основа продукционного процесса.
- •44 И 40..Биологическая роль дыхания
- •70.Рост и развитие растений
- •44.Зависимость дыхания от внешних условий
- •15.Пластидная система в клетке растения
- •41.Особенности водной среды обитания.
- •5.Структура и функции клеточной стенки
- •46.Участие аппарата гольджи в синтезе
- •14.Нарушения обмена в условиях дефицита
- •72.Радиация и устойчивость растений
- •49.Ростовые и тургорные движения
- •11.Общее уравнение фотосинтеза.
- •16.Движущие силы водного тока в системе
- •69.Засоление почв и группы растений
- •22.Пигментные системы растений
- •42.Компоненты этц фотосинтеза. Фотосистемы
- •60.Газоустойчивость растений
- •74 И 71.Холодо- и морозоустойчивость.
44 И 40..Биологическая роль дыхания
Клеточное дыхание – это окислительный, с участием кислорода распад органических питательных веществ, сопровождающийся образованием химически активных метаболитов и освобождением энергии, которые используются клетками для процессов жизнедеятельности. Биологическая роль дыхания не исчерпывается использованием энергии, заключённой в окисляемой органической молекуле. В ходе окислительных превращений органических веществ образуются активные промежуточные соединения — метаболиты, которые живая клетка использует для синтеза специфических составных частей своей протоплазмы, образования ферментов и др. Всем этим определяется центральное место, занимаемое дыханием в комплексе процессов обмена веществ живой клетки. В дыхании скрещиваются и увязываются процессы обмена белков, нуклеиновых кислот, углеводов, жиров и др. компонентов протоплазмы. Клеточное дыхание происходит в несколько этапов: 1) подготовительный (анаэробный), белки до аминокислот, жиры до жирный кислот и глицерола, углеводы до моносахаридов (глюкоза), 2) гликолиз, в цитоплазму клетки без кислорода поступает глюкоза. В цитоплазме клетки без кислорода происходит разложение глюкозы до 2 молекул пировиноградной кислоты, 3) аэробная фаза дыхания локализована в митохондриях. Пировиноградная кислота окисляется до воды и углекислого газа в дыхательном цикле, получившем название цикла Кребса. В этом цикле окисляется не сама пировиноградная кислота, а ее производное – ацетилкофермент А. При окислении одной молекулы пировиноградной кислоты образуется 3 молекулы НАДН, 1 молекула НАДФН и 1 молекула ФАДН2, при окислении которых в дыхательной электронтранспортной цепи синтезируется 14 молекул АТФ, 4) этап аэробный, окислительной фосфорилирование. На этом этапе выделяется СО2, НАД·Н2, 4АТФ.
70.Рост и развитие растений
Онтогенезом называют индивидуальное развитие организма от зиготы или вегетативного зачатка до естественной смерти. В ходе онтогенеза реализуется наследственная информация организма – его генотип – в конкретных условиях окружающей среды, в результате чего формируется фенотип, то есть совокупность всех признаков и свойств данного индивидуального организма. Развитие – это качественные изменения в структуре и функциональной активности растения и его частей в процессе онтогенеза. Возникновение качественных различий между клетками, тканями и органами получило название дифференцировки. Рост – необратимое увеличение размеров и массы клетки, органа или всего организма, обусловленное новообразованием элементов их структур.
40.ГЛИКОЛИЗ И ЕГО ЗНАЧЕНИЕ. Реакции гликолиза идут в цитозоле и в хлоропластах. В результате гликолиза из одной молекулы глюкозы образуется 2 молекулы пировиноградной кислоты и 4 молекулы АТФ. Поскольку макроэргическая связь формируется прямо на окисляемом субстрате, такой процесс образования АТФ получил название субстратного фосфорилирования. Субстратное фосфорилирование - синтез богатых энергией фосфорных соединений за счёт энергии окислительно-восстановительных реакций. Две молекулы АТФ покрывают расход на первоначальное активирование субстрата за счет фосфорилирования. Следовательно, накапливаются 2 молекулы АТФ. Кроме того, в ходе гликолиза восстанавливаются 2 молекулы НАД до НАДН, окисление которых в электронтранспортной цепи митохондрий приводит к синтезу 6 молекул АТФ. Итого образуются 8 молекул АТФ. Образовавшиеся 2 молекулы пировиноградной кислоты вступают в аэробную фазу дыхания. Регуляция процесса гликолиза. Интенсивность гликолиза контролируется в нескольких участках. Вовлечение глюкозы в процесс гликолиза регулируется на уровне фермента гексокиназы. Избыток продукта реакции подавляет деятельность фермента.
27.ФАЗЫ РОСТА КЛЕТКИ. Рост – необратимое увеличение размеров и массы клетки, органа или всего организма, обусловленное новообразованием элементов их структур. Эмбриональная фаза или митотический цикл клетки делится на два периода: собственно деление клетки и период между делениями – интерфаза. Митоз – это такой способ деления клеток, при котором число хромосом удваивается, так что каждая дочерняя клетка получает набор хромосом, равный набору хромосом материнской клетки. Фаза растяжения. Прекратившие деление клетки переходят к росту растяжением. Происходит рост клеточной стенки из-за включения в ее состав пектиновых веществ и целлюлозы. Пектиновые вещества образуются в везикулах аппарата Гольджи. Увеличение размеров растущей клетки происходит за счет образования большой центральной вакуоли и формирования органелл цитоплазмы. Фаза дифференцировки клетки. Каждая клетка растения содержит в своем геноме полную информацию о развитии всего организма и может дать начало формированию целого растения (свойство тотипотентности). Однако, находясь в составе организма, эта клетка будет реализовать только часть своей генетической информации. Сигналами для экспрессии только определенных генов служат сочетания фитогормонов, метаболитов и физико-химических факторов (например, давление соседних клеток). Тотипотентность – из растительной клетки можно вырастить целое растение. Тотипотентность - свойство живых клеток, позволяющее им осуществлять разные варианты развития, в том числе и обеспечивать развитие целого зародыша.