
- •26. Значение витаминов.Витамины, группа незаменимых для организма человека и животных ор-
- •20.Органические кислоты
- •Алкалоиды
- •Гликозиды
- •25.Покой растений
- •31.Осмотические свойства клетки. Тургор. Плазмолиз и деплазмолиз,сосущая сила.
- •37.Изменеие действия ферментов в зависимости от усл,внешней среды.Ферменты - это белки, выполняющие функция катализатора при прохождении в клетке биохимических реакций.
- •43.Белки.Строение, классификация и функции белков.
- •66.Гормональная теория цветения Чайлахяна
- •56.Полярность
- •18.Клеточное ядро.
66.Гормональная теория цветения Чайлахяна
Гипотетический стимул, вызывающий цветение, М. Х.Чайлахян назвал Флоригеном
(Flore — цветки, Genesis — Рождение). По теории М. Х.Чайлахяна, у нейтральных растений флориген образуется постоянно и не зависит от длины дня, у ДДР флориген образуется на длинном, у КДР — на коротком дне.В конце 1950-х гг. А. Ланг (бывший аспирант М. X. Чайлахяна, который уехал в США) прислал в Москву только что открытые гормоны — гиббереллины. Чайлахян исследовал влияние гиббереллинов на цветение. Оказалось, что у рудбекии, укропа , Салата-латука И других ДДР гиббереллин ускоряет образование цветков даже на коротком дне. К гиб-береллину оказались отзывчивыми и КДДР (каланхоэ и др.). Таким образом, гиббереллин мог заменить длинный день для ДДР. Измерение уровня гиббереллинов в листьях показало, что на длинном дне содержание гиббереллина выше, чем на коротком. М. Х.Чайлахян сделал вывод, что для цветения необходим гиббереллин. Однако обработка гиббереллинами КДР в условиях длинного дня не вызывала цветения: растения сильно вытягивались, но продолжали вегетировать.
На основании полученных результатов М. X. Чайлахян разработал Гормональную теорию цветения Растения. Флориген (стимул, вызывающий образование цветков) он «разбил» на два компонента: Гиббереллины И гипотетические Антезины. Для цветения необходимо одновременное присутствие обоих компонентов. У HP и гиббереллин, и антезин синтезируются конститутивно. У ДДР антезин все время присутствует в растении, а уровень гиббереллина повышается на длинном дне и происходит цветение. У КДР, наоборот, гиббереллина всегда достаточно для цветения, а антезин синтезируется только на коротком дне. Более сложное объяснение было предложено для переходных групп растений: у них гиббереллин синтезируется на длинном дне, а антезин — на коротком. Различия между группами состоят в способности длительно депонировать гиббереллины и антезины. ДКДР образуют гиббереллины на длинном дне и могут их долго хранить. Антезины у них синтезируются на коротком дне, и быстро разрушаются. КДДР, в отличие от ДКДР, запасают антезины, но быстро разрушают гиббереллины.
56.Полярность
(биологическая), свойственная организмам специфическая ориентация процессов и структур в пространстве, приводящая к возникновению морфофизиологических различий на противоположных концах (или сторонах) клеток, тканей, органов и организма в целом. Особенно четко проявляется П. у растений. Даже многоклеточные тяжи зелёных водорослей и гифы грибов обладают П., поскольку составляющие их клетки ориентированы в одном направлении. У спор водорослей, грибов, мхов, хвощей и папоротников П. возникает лишь после соответствующего внешнего воздействия, когда клетки начинают дробиться, давая начало новому организму, ориентированному в определённой плоскости. У семенных растений П. обнаруживается уже в зиготе и развивающемся зародыше, где формируются 2 зачаточных органа — листовая почка и корень. У формирующегося растительного организма П. проявляется в преобладающем направлении деления клеток, их роста и дифференцировки. Поляризация и дифференцировка каждой клетки зависят от того, какое положение она занимает по отношению к др. клеткам. Ведущая роль в поляризации клеток и тканей, в ориентировании органов в пространстве принадлежит фитогормонам Так, прививка почки сирени в недифференцированную каллюсную ткань вызывает полярное образование ксилемных тяжей. Добавка в зону прививки ауксинов резко усиливает П. Под действием гиббереллинов у стеблёвых черенков активируется рост надземных частей, под влиянием ауксинов — заложение и рост корней. П. сформировавшихся органов как правило, сохраняется даже при резком нарушении их нормального положения (опыты с перевёртыванием черенков). Однако в некоторых случаях удаётся нарушить П. изменением условий внешней среды (свет, тепло, влага, химические вещества), которые меняют градиент гормональных и трофических процессов, что, в свою очередь, определяет поляризацию морфо-физиологических структур.
ФИЗИОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ
взаимосвязь процессов и явлений, имеющих место в живом организме. Обусловлена обменом веществ, экологическими факторами произрастания, генетическими основой индивидуума. Виноградное растение в большом онтогенетическими цикле претерпевает сложный процесс эволюции, в результате чего складывается стабильная система физиологич. коррелятивных связей, обеспечивающих нормальное развитие и существование организма как единого целого. В общем виде различают 2 типа Ф. к.: трофические регулируются метаболитами общего типа, и гормональные — регулируются фито-гормонами. Типы между собой трудноразличимы. Результатом тесной Ф. к. является упорядоченная взаимосвязь между корневой системой и надземной частью куста. Листовая поверхность снабжает ассимилятами корневую систему, корни же обеспечивают надземные части водой и минеральными веществами. Любое нарушение конкретной связи между корнями и побегами приводит к временному прекращению или ослаблению функций надземных органов. Чем сильнее растет надземная часть, тем больше растет и развивается корневая система, и наоборот. Нагрузка в 2,5—3 раза выше оптимальной приводит к значительному ослаблению роста побегов и корней, наступает т.н. самоизреживание корней, или корнепад. При нарушении этой Ф. к. зачатки почек образуются на узлах многолетных частей стебля в паренхиме почечных следов, на границе годичного прироста побегов в толщину. Из этих почек образуются порослевые побеги и "волчки". При выращивании виноградных кустов необходимо обеспечивать создание динамич. соответствия между нагрузкой побегами, гроздями и листовой поверхностью и потенциальной возможностью их корневой системы. Установлена Ф. к. между силой роста сеянцев (длиной побегов) в 1-й год и их способностью закладывать соцветия в почках и плодоносить в последующие годы. Растение вступает в плодоношение, когда побеги достигают определенной величины вегетативного роста. Например сеянцы, средняя длина побегов которых в течение 1-го года жизни превышала Зм, плодоносили на 2-й год; из сеянцев, у которых длина побегов составляла от 2 до 4 м, плодоносили 65%, от 1 до 2 м — 7,3% и до 1м — не плодоносил ни один. В силу хорошо выраженной автономности побегов у винограда существует зависимость между длиной побега (соответственно числом листьев), его плодоносностью (числом гроздей и их величиной) и сахаристостью ягод. Чем длиннее побег (до определенного предела), тем выше его продуктивность и качество урожая. Установлена положит Ф. к. между длиной побега и суммарной площадью листьев. Рост кустов зависит от физиологически коррелятивного подавления расположенных ниже побегов (явление полярности): побеги на конце стрелки отличаются более сильным ростом, чем у ее основания, количество проросших почек снижается к основанию стрелки. Существует Ф. к. между числом и размерами зачатков соцветий, между количеством семян и величиной, формой, объемом и массой ягод. Образование плодов коррелятивно регулируется гормонами. В виноградарстве это явление широко используется для получения бессемянных ягод опрыскиванием кустов гиббереллиномСуммарное накопление ассимилятов зависит от величины листовой поверхности в пересчете на гектар и коррелирует с количеством полученного урожая. Превращения ассимилятов тесно связаны с раннеспелостью, способностью виноградных растений противостоять морозу, засухе и др. негативным явлениям природы. Существует положит, зависимость между интенсивностью дыхания, окислит, процессом и устойчивостью растений к разным заболеваниям. Конечным результатом этого является способность растений сохранять нормальный ход процессов жизнедеятельности. Интенсивность дыхания корней коррелирует с основными фазами роста и органогенеза надземной части куста. Постепенное старение листьев, как и апикальное доминирование, является результатом взаимодействия трофической и гормональной регуляции данных явлений. При Ф. к. возможна и более глубокая взаимосвязь: компенсирование функций утраченных или вышедших из строя частей другими. Более того, растения могут и восстановить утраченные органы. Эти принципы проявления целостности организма широко используются в виноградарстве — проводятся обрезка, омолаживание, прищипка, чеканка и др. приемы.
59.Влияние внешних условий на рост. Внешние условия оказывают на рост как прямое, так и косвенное влияние. Последнее связано с тем, что скорость роста зависит от интенсивности всех остальных физиологических процессов, воздушного и корневого питания, снабжения водой, напряженности процессов обмена веществ и энергии Температура.Рост растений возможен в сравнительно широких температурных границах. Растения ранневесенней флоры растут при температуре даже несколько ниже 0°С. Есть растения, для которых верхняя температурная граница роста несколько превышает 50°С. Для каждого вида растения в зависимости от его особенностей и, главным образом, от географического происхождения характерны определенные температурные границы, в которых возможно протекание ростовых процессов. Различают три кардинальные температурные точки: минимальная температура, при которой рост только начинается, оптимальная — наиболее благоприятная для ростовых процессов, и максимальная, при которой рост прекращается. Оптимальные и особенно максимальные температуры для роста различных культур очень близки. С повышением температуры от минимальной до оптимальной скорость роста резко возрастает. В области более низких температур наблюдается более быстрый подъем темпов роста при повышении температуры. Сказанное хорошо видно из данных по изменению температурного коэффициента в разных интервалах температуры. Так, скорость роста проростков гороха при повышении температуры от 0 до 10°С возрастает в 9 раз, от 10 до 20°С — в 2,5 раза, а от 20 до 30°С — всего в 1,9 раза. Оптимальные температуры могут быть неодинаковыми для роста разных органов одного и того же растения. Как правило, оптимальная температура для роста корневых систем ниже по сравнению с надземными органами. Для роста боковых побегов оптимальная температура ниже по сравнению с ростом главного стебля. Свет.Растения используют свет двумя путями: во-первых, как энергетический ресурсво-вторых, как сигнал или источник информации. Во втором случае энергия света может быть на несколько порядков ниже, чем в первом. Свет оказывает большое и разностороннее влияние на темпы и характер роста, как отдельных органов, так и растительного организма в целом. При этом на разные стороны ростовых процессов влияние света проявляется неоднозначно. Так, свет необходим для протекания процесса фотосинтеза, и поэтому накопление массы растения без света не идет. Вместе с тем рост клеток растяжением может идти в темноте, более того, на свету этот процесс тормозится. Свет оказывает большое влияние и на формообразовательные процессы. Этиолированные проростки, выросшие в темноте, характеризуются рядом анатомических и морфологических особенностей. В отсутствие света происходит упрощение анатомической структуры стебля. Слабо развиваются ткани центрального цилиндра, механические ткани. Вместе с тем растяжение клеток в темноте идет очень интенсивно. В результате образуются длинные, вытянутые стебли. Листья редуцированы, у двудольных растений вместо листовой пластинки образуются лишь небольшие чешуйкиНарушение соотношения ауксинов и ингибиторов вызывает несбалансированный рост. При выходе проростков на поверхность почвы происходят их внутренние и внешние изменения. В темноте у проростков двудольных растений гипокотиль изогнут, что защищает точку роста в почве от повреждений. Под влиянием света этот изгиб («крючок») выпрямляется. На свету рост стебля тормозится, рост листьев усиливается, и они принимают обычную форму. Под влиянием света происходят анатомические изменения стебля, дифференцируется эпидермис, появляются волоски, изменяется окраска — синтезируется хлорофилл. Снабжение кислородом.Процессы роста требуют затрат энергии, источником которой служит процесс дыхания. В этой связи понятна необходимость кислорода. При снижении концентрации кислорода ниже 5% рост тормозится. Это происходит не только из-за нарушения энергетического баланса, но и в силу накопления продуктов анаэробного обмена (спирт, молочная кислота). Минеральное питание. Для нормального протекания ростовых процессов необходимо достаточное снабжение всеми необходимыми минеральными элементами. Особенно специфична роль снабжения растений азотом. Это связано не только с тем, что азот входит в состав белков и нуклеиновых кислот, но и с образованием двух основных групп гормонов, регулирующих ростовые процессы (ауксинов и цитокининов) Минеральное питание. Плодовые растения нормально растут и плодоносят при наличии определенного количества в почве и воздухе основных элементов питания: углерода, кислорода, водорода, азота, фосфора, калия и кальция. В меньшей мере для питания нужны сера, магний и железо. В очень малом количестве требуются так называемые микроэлементы: бор, марганец, медь, цинк и др. Большую часть элементов питания растения извлекают из почвы в растворенном состоянии через всасывающую корневую систему, а углерод в основном поступает в растения из воздуха через листья и частично из почвы. В первый период жизни и в период энергичного роста листьев, побегов и плодов растение испытывает наибольшую потребность в азоте. При недостатке азота у растений образуются более мелкие листья, ослабляются интенсивность окраски, рост побегов, снижается урожай. Избыток азота приводит к ослаблению цветения и плодоношения, задержке созревания побегов и снижению их зимоустойчивости; у плодов ухудшаются вкусовые качества и снижается сахаристость, сокращается срок лежкости.При недостатке фосфора на листьях появляются фиолетовые и красноватые пятна, завязи сильно опадают, плоды развиваются слабо и ухудшается нх внешний вид.Недостаток калия приводит к ослаблению роста растений, к свертыванию и засыханию краев листьев, к сильному осыпанию завязей и плохому развитию плодов.. При недостатке кальция корни развиваются слабо, деревья косточковых пород страдают камедетечением Недостаток магния в почве приводит к появлению на листьях желтых пятен и темных фиолетовых полос. В образовании хлорофилла и нормальном развитии ассимиляционного аппарата имеет также большое значение и железо.
75 физиологические основы хранения семян.Продовольственные товары являются благоприятной средой для развития микроорганизмов. В зависимости от отношения к температуре микроорганизмы делятся на: термофильные, развивающиеся при 50-70 °С; мезофильные - при 20-40 °С; психрофильные - от +10 до -8 "С[]. К термофилам относятся споровые формы микроорганизмов, споры которых отличаются особой устойчивостью, вследствие чего они могут переносить стерилизацию. К мезофилам относятся многие гнилостные бактерии, вызывающие порчу продовольственных товаров при положительных температурах, а также все патогенные и токсигенные формы бактерий. К консервированию низкими температурами относится охлаждение и замораживание.
Охлаждение - холодильная обработка продуктов и сырья при температуре, близкой к криоскопической, т. е. к температуре замерзания клеточной жидкости, которая обусловлена составом и концентрацией сухих веществ. Различные продовольственные товары имеют разную криоскопическую температуру. Так, для мяса она находится в пределах от 0 до 4 °С, для рыбы - от -1 до 5 °С; для молока и молочных продуктов - от 0 до 8 °С; для картофеля - от 2 до 4 °С;
Наиболее распространены те промышленные способы охлаждения, которые осуществляются передачей тепла конвекцией, радиацией, теплообменом при фазовом превращении. Охлаждающей средой является воздух, движущийся с различной скоростью. Как правило, охлаждение производится в холодильных камерах, снабженных устройством для распределения охлаждённого воздуха.
Для способов охлаждения, в основе которых лежит конвективный и радиационный теплообмен, характерны невысокие потери продуктом влаги при охлаждении. Это охлаждение продуктов в жидких средах, а также упакованных в непроницаемые оболочки. В жидкой среде охлаждают рыбу, птицу, некоторые овощи; в оболочках и упаковках - колбасные изделия, полуфабрикаты, кулинарные, кондитерские изделия и др.
Охлаждение - наилучший способ сохранения пищевой ценности и органолептических свойств товара, но оно не обеспечивает длительного срока хранения.
Замораживание - это процесс понижения температуры продовольственных товаров ниже криоскопической на 10-30 °С, сопровождающихся переходом в лед содержащейся в них воды. Замораживание обеспечивает более высокую стойкость при хранении по сравнению с охлаждением, многие замороженные продукты могут храниться до года.
Чем ниже температура (от -30 до -35 °С), тем быстрее скорость замораживания, при этом в клетках и в межклеточном пространстве ткани образуются мелкие кристаллы льда и ткани не повреждаются. При медленном замораживании внутри клетки образуются крупные кристаллы льда, которые повреждают ее, и при размораживании происходит потеря клеточного сока.
К сверхбыстрому относится замораживание в кипящих хладоносителях (жидкий азот, фреон и др.).
Консервирование высокими температурами проводят для уничтожения микрофлоры и инактивации ферментов продовольственных товаров. К этим методам относятся пастеризация и стерилизация[].
Пастеризацию проводят при температуре ниже 100 °С. При этом сохраняются споры микроорганизмов. Различают пастеризацию короткую (при 85-95 °С в течение 0,5-1 мин) и длительную (при температуре 65 °С в течение 25-30 мин). Пастеризацию в основном применяют для обработки продуктов с высокой кислотностью (молоко, соки, компоты, пиво). При значении рН ниже 4,2 уменьшается термоустойчивость многих микроорганизмов.
Стерилизация - это нагревание продовольственных товаров при температуре выше 100 °С. При этом микрофлора полностью уничтожается. Стерилизацию используют при производстве консервов в герметичной металлической или стеклянной таре. Режим стерилизации определяется видом товара, временем и температурой. Режим стерилизации консервов с низкой кислотностью должен быть более жестким, чем консервов с высокой кислотностью. Молочная кислота оказывает более угнетающее действие на микроорганизмы, чем лимонная, а лимонная - более угнетающее, чем уксусная. Наличие жира снижает стерилизующий эффект.
Стерилизацию обычно проводят при температуре 100-120 °С в течение 60-120 мин (мясные товары), 40-120 мин (рыбные), 25-60 мин (овощные), 10-20 мин (сгущенное молоко) паром, водой, воздухом, паровоздушной смесью с помощью разнообразного оборудования (ротационного, статического, непрерывнодействующего и др.).
При стерилизации снижается пищевая ценность товара, его вкусовые свойства в результате гидролиза белков, жиров, углеводов, разрушения витаминов, некоторых аминокислот и пигментов.
Консервирование ионизирующими излучениями называют холодной стерилизацией, или пастеризацией, так как стерилизующий эффект достигается без повышения температуры. Для обработки продовольственных товаров используют А-, Р-излучение, рентгеновское излучение, поток ускоренных электронов. Ионизирующая радиация основана па ионизации микроорганизмов, в результате чего они погибают. К консервированию ионизирующими излучениями относится радиационная стерилизация (радаппертизация) продуктов длительного хранения и радуризация пастеризующими дозами.
Облучение продуктов проводят в инертных газах, вакууме, с применением антиокислителей, в условиях низких температур.
Существенным недостатком ионизирующей обработки продуктов является изменение химического состава и органолептических свойств. В промышленности этот метод используется для обработки тары, упаковки, помещений.
Консервирование ультразвуком (более 20 кГц). Ультразвуковые волны обладают большой механической энергией, распространяются в твердых, жидких, газообразных средах, вызывают ряд физических, химических и биологических явлений: инактивацию ферментов, витаминов, токсинов, разрушение одноклеточных и многоклеточных организмов. Поэтому этот метод используют для пастеризации молока, в бродильной и безалкогольной промышленности, для стерилизации консервов.
Облучение ультрафиолетовыми лучами (УФЛ). Это облучение лучами с длиной волны 60-400 нм. Гибель микрофлоры обусловлена адсорбцией УФЛ нуклеиновыми кислотами и нуклеопротеидами, что вызывает их денатурацию. Особенно чувствительны к УФЛ патогенные микроорганизмы и гнилостные бактерии. Пигментные бактерии, дрожжи и их споры устойчивее к УФЛ. Применение УФЛ ограничено из-за низкой проникающей способности (0,1 мм). Поэтому УФЛ применяют для обработки поверхности мясных туш, крупных рыб, колбасных изделий, а также для дезинфекции тары, оборудования, камер холодильников и складских помещений.
Использование обеспложивающих фильтров. Сущность этого метода состоит в механическом отделении товара от возбудителей порчи с использованием фильтров с микроскопическими порами, т. е. процесса ультрафильтрации. Этот способ позволяет максимально сохранить пищевую ценность и органолептические свойства товаров и применяется для обработки молока, пива, соков, вина и других жидких продуктов.
. Для хранения овощей применяются специальные утепленные овощехранилища, оборудованные вентиляцией. В последнее время во многих странах (Англия, Франция, Голландия, Италия, США, ФРГ) особый интерес вызывают применение активного вентилирования в овощехранилищах и хранение овощей и плодов в герметических холодильных камерах с регулируемой средой для предупреждения их порчи. Применение в этих камерах специальных газовых смесей (углекислота, кислород, азот в определенных соотношениях) в сочетании с пониженной температурой хранения снижает интенсивность обмена веществ в овощах и плодах и тем самым задерживает их прорастание, увядание и т. д.
Широкое распространение в зарубежной практике получило также хранение плодов в полиэтиленовых контейнерах с силиконовыми вставками. Контейнеры представляют собой мешки из полиэтилена, в одной из сторон которых вставлены силиконовые пленки. Обладая избирательной проницаемостью для С02 и задерживая поступление в контейнер кислорода, они создают в нем определенный газовый состав, режим которого обеспечивается путем подбора соответствующего размера пленки.
Хранение - совокупность условий, которые необходимо соблюдать, чтобы в достаточной мере замедлить биохимические процессы в плодах и овощах, максимально сохранить качество и снизить потери и воспрепятствовать поражению их микробиологическими и физиологическими заболеваниями.
Хранение включает следующие важнейшие факторы: температуру, влажность воздуха, обмен воздуха, состав газовой среды и свет.
Температура для хранения большинства плодов и овощей должна быть на уровне около 0° С. При низкой температуре энергия дыхания плодов и овощей заметно снижается, а следовательно, снижается расход органических веществ и уменьшаются потери влаги; кроме того, при 0° С значительно ослабевает деятельность микроорганизмов. Но это не означает, что можно создавать произвольно низкую температуру; уровень температуры хранения обычно находится где-то близко к границе, но выше температуры замерзания тканей.
Влажность воздуха существенно влияет на сохраняемость плодов и овощей. Поскольку овощи содержат много воды, то лучше было бы хранить их при влажности воздуха, близкой 100%. Однако очень высокая влажность воздуха благоприятна для развития микроорганизмов, и поэтому овощи приходится хранить при относительной влажности воздуха в пределах от 70 до 95%. Лишь овощную зелень, имеющую непродолжительные сроки хранения, удается хранить при влажности 97- 100% (путем непрерывного опрыскивания ее водой). Если излишняя влажность воздуха создает благоприятную среду для развития плесени, то слишком пониженная влажность воздуха вызывает усиленное испарение влаги из плодов и овощей.
Испарение даже небольшого количества воды, примерно 6-8%, вызывает их увядание. Поэтому оптимальная влажность воздуха должна быть достаточно высокой (85-95%). Однако некоторые овощи (репчатый лук, чеснок) хранят при пониженной влажности воздуха (70-80%).
Источником влаги в хранилищах служат сами плоды и овощи, выделяющие влагу в атмосферу в результате испарения и аэробного дыхания, а также поступающий извне воздух и некоторые искусственные источники (бочки с водой, мокрый брезент, снег, внесенный в хранилище).
Обмен воздуха означает его вентиляцию и циркуляцию. Вентиляция - это поступление воздуха в хранилище извне; циркуляция - движение воздуха внутри хранилища вокруг плодов и овощей (т. е. внутренний обмен). Вентиляция необходима для создания определенной температуры, влажности и газового со става воздуха в складе.
При хранении плодов и овощей в складах может накапливаться излишнее тепло и излишняя влага. Источниками тепла и влаги кроме дыхания и испарения являются также почва в некоторых складах и тепло, выделяемое при конденсации влаги в результате соприкосновения теплого воздуха с холодной крышей. Различают вентиляцию естественную и принудительную, или механическую, к которой относят также активную вентиляцию.
Свет также оказывает воздействие на интенсивность ферментативных процессов. На свету усиливается, например, прорастание картофеля. Кроме того, свет способствует позеленению клубней и увеличению в них содержания соланина. Поэтому плоды и овощи, как правило, хранят в темноте.
Факторы, влияющие на сохраняемость плодов и овощей. За критерий сохраняемости овощей практически принимают сроки их хранения и размеры потерь, которые зависят от видовых и сортовых признаков (природных особенностей), условий выращивания, степени зрелости, вида и степени поврежденности, режима хранения и перевозки и других факторов. При этом сроками хранения следует считать время, в течение которого плоды и овощи в нормальных условиях сохраняют свои потребительные достоинства, и имеют минимальные потери, а не любой срок, который может исчисляться до момента их порчи.
По срокам хранения при оптимальных условиях плоды можно разделить на три группы.
- плоды с длительным сроком хранения (в среднем от З до 6-8 мес.): яблоки, груши зимних сортов и виноград поздних сроков созревания (некоторые столовые сорта), лимоны, апельсины, клюква, гранаты, орехи; плоды со средним сроком хранения (в среднем от 1 до 2-З мес.): яблоки, груши и виноград со средним сроком созревания, айва, рябина, брусника и др.;
- плоды с коротким сроком хранения (в среднем 15 -20 дней): большинство косточковых, ранние сорта яблок, груш и винограда, смородина, крыжовник и некоторые другие ягоды.
Различные виды овощей по срокам хранения с учетом оптимальных условий также можно разделить на три группы.
- Овощи с длительным сроком хранения представляют собой вегетативные органы двухлетних растений, например корнеплоды (кроме редиса, являющегося однолетним растением), )картофель, кочанная капуста, лук репчатый, чеснок и другие, которые дают семена на второй год жизни. Во время хранения эти овощи способны пребывать в состоянии покоя, в них продолжаются биологические процессы дифференциации генеративных органов, например в корнеплодах увеличивается количество почек, способных прорастать. Основным мероприятием по удлинению сроков хранения этих овощей является предупреждение их заболеваний и прорастания.
- Овощи со средним сроком хранения, к которым относят плодовые овощи. По сохраняемости они уступают овощам первой группы; внутри этой группы виды овощей различаются по срокам хранения (томаты и баклажаны, тыквы и огурцы, арбузы и дыни). Плодовая мякоть - обеспечивает питательными веществами и сохраняет содержащиеся в ней семена. После созревания семян происходит разрушение клеточных структур мякоти, активизируются процессы распада. Продолжительность хранения плодовых овощей зависит от степени зрелости, при которой они убраны, и от интенсивности биохимических изменений в их тканях, в связи с чем режим хранения этих овощей должен обеспечивать наибольшее замедление процессов, происходящих в них после уборки при хранении.
- Овощи с коротким сроком хранения представляют собой листья (салат, щавель, шпинат, зеленый лук, укроп, чабер, эстрагон и др.), которые значительно уступают по срокам хранения другим группам овощей.
Устойчивость плодов и овощей является проявлением их естественных или наследственных свойств, сложившихся под влиянием внешних условий и передающихся по наследству.
В этой связи огромное значение имеет выращивание устойчивых к болезням сортов плодов и овощей. Однако в природе отсутствуют такие сорта, которые вообще не поражались бы микроорганизмами при благоприятных условиях.
Большая или меньшая устойчивость плодов и овощей данного сорта к микроорганизмам или полная невосприимчивость, основанная на несовместимости растительного организма и паразита, является наследственным признаком, который регулируется генетическим аппаратом организма. Существует корреляция между количеством генов, определяющих устойчивость данного вида например, картофеля разных сортов) и данному паразиту, и количеством рас этого паразита, обладающих вирулентностыо. Генетика устойчивости сорта соответствует обычно генетике вирулентности паразита. Физические расы обнаружены у многих паразитических микроорганизмов, способных поражать различные сорта картофеля.
Наряду с дыханием большую роль в сохраняемости плодов и овощей играют процессы, связанные с образованием в ответ на инфекцию антибиотических веществ, подавляющих паразитные организмы, а также продуцируемые ими экзоферменты и токсины. Антибиотическими свойствами обладают некоторые вещества, образующиеся в раненой и прираневой зонах.
Основная цель хранения свежих плодов и овощей состоит в том, чтобы создать условия для замедления биохимических, физических и других жизненноважных процессов, протекающих в плодах после сбора, задержать наступление фаз старения и отмирание плода и тем самым полнее сохранить химический состав и товарное качество этой продукции.