
- •Раздел 1
- •Раздел 2
- •Лекция 10
- •Лекция 11
- •Лекция 12
- •Лекция 13
- •Лекция 14
- •Раздел 1
- •Основы технологии обработки
- •В гибких производственных системах
- •Лекция 1
- •1. Повышение уровня автоматизации - закономерность развития
- •1. Повышение уровня автоматизации - закономерность развития машиностроительного производства
- •2. Гибкое производство - новая концепция в машиностроении
- •Лекция 2
- •2. Место гпс в механообрабатывающем производстве.
- •1. Основные понятия и определения, относящиеся к гибкому производству
- •2. Место гпс в механообрабатывающем производстве
- •Лекция 3
- •2. Опыт промышленного внедрения гпс
- •3. Понятие гибкости гпс
- •4. Структура гпс
- •Лекция 4
- •2. Транспортный модуль
- •3. Установочный модуль гпс
- •Лекция 5
- •2. Модуль асу гпс
- •3. Контрольно-испытательный модуль гпс
- •Лекция 6
- •2. Система технической диагностики оборудования
- •3. Контроль качества обработки на станке
- •4. Контроль состояния инструмента на станке
- •Лекция 7
- •1. Станочная система гпс. Структура многоцелевых станков с чпу
- •1. Станочная система гпс
- •Лекция 8
- •2. Этапы создания гпс в производстве
- •3. Основные показатели применения гпс
- •Часть 2 Основы управления точностью обработки в гпс. Лекция 9
- •1. Требования к деталям, обрабатываемым в гпс механообработки.
- •2. Обоснование необходимости управления процессом достижения
- •1. Требования к деталям, обрабатываемым в гпс механообработки
- •2. Обоснование необходимости управления процессом достижения требуемой точности в гпс
- •3. Координатные системы мцс с чпу и этапы достижения точности при обработке.
- •4. Формирование размерных связей, определяющих точность обработки на мцс с чпу
- •Лекция 10
- •1. Процесс накопления погрешностей обработки на вертикальном
- •2. Количественная оценка погрешностей обработки на вертикальном
- •1. Процесс накопления погрешностей обработки на вертикальном мцс с чпу
- •2. Количественная оценка погрешностей обработки на вертикальном мцс с чпу
- •3. Размерные связи и процесс образования погрешностей
- •Лекция 11
- •2. Погрешность позиционирования. Управление погрешностями станка с чпу
- •3. Пути управления точностью обработки на мцс с чпу
- •Лекция 12.
- •1. Управление размером статической настройки на вертикальном
- •2. Управление размером установки на вертикальном мцс с чпу.
- •3. Количественная оценка возможной точности обработки линейных
- •1. Управление размером статической настройки на вертикальном мцс с чпу.
- •При помощи сни
- •2. Управление размером установки на вертикальном мцс с чпу
- •3. Количественная оценка возможной точности обработки линейных размеров на вертикальном мцс с чпу, оснащенном сни и скпу
- •Лекция 13.
- •2. Адаптивные системы управления станками с чпу.
- •3. Адаптивное управление точностью обработки по принципу
- •1. Управление процессом достижения точности диаметральных размеров на мцс с чпу
- •2. Адаптивные системы управления станками с чпу
- •3. Адаптивное управление точностью обработки по размеру динамической настройки
- •Лекция 14.
- •1. Адаптивное управление точностью обработки по размеру статической настройки
- •2. Адаптивное управление точностью обработки по размерам динамической и статической настройки
- •3. Измерительный комплекс мцс с чпу для управления точностью обработки в гпс
3. Установочный модуль гпс
Для автоматизации загрузочно-разгрузочных работ в установочном модуле ГПС предусмотрено следующее оборудование (рис. 4.4).
Рис. 4.4. Оборудование установочного модуля
Устройствами передачи в ГПС служат стационарные столы с толкателями, поворотные столы, различные по конструкции конвейеры и т.д.
Автоматический прием заготовок и выдача обработанных деталей осуществляется с помощью специальных по конструкции столов станков или приспособлений, устанавливаемых на столы обычных станков.
Лекция 5
План:
1. Инструментальный модуль ГПС.
2. Модуль АСУ ГПС.
3. Контрольно-испытательный модуль.
1. Инструментальный модуль ГПС
Для эффективной работы ГПС в ней должна быть решена задача автоматизированного обеспечения станков режущим инструментом. Такая постановка задачи предполагает наличие в ГПС центрального склада инструментов, пристаночных инструментальных магазинов, транспортной системы доставки инструментов, а также участка подготовки инструментов к работе и системы контроля его работоспособности на станке (рис. 5.1).
Р
ис.5.1. Структура инструментального модуля
Стоимость инструментального обеспечения ГПС составляет около 20% всех затрат. Для уменьшения затрат необходимо стремиться к сокращению номенклатуры и числа используемых в ГПС инструментов. Этого можно добиться за счет реализации следующих мероприятий:
- замена нескольких (функционально одинаковых и различных) инструментов одним;
- замена фасонных инструментов формообразующими инструментами;
- принципиальные изменения конструкции деталей;
- конструктивно-технологическая унификация геометрических элементов деталей.
В настоящее время применительно к ГПС разработаны различные конструкции расточных оправок с автоматическим регулированием вылета резца с точностью до 0,005 мм, разверток, допускающих наложение фасок при обратном ходе и т.д.
Наиболее успешно вопросы инструментального обеспечения ГПС решаются в случаях, когда инструменты конструктивно компонуются по блочно-модульному принципу. Сейчас этот принцип реализован, как для фрезерно-сверлильно-расточного, так и для токарного инструмента (системы Сандвик-Коромант, Хертель, Видиа Крупп). Эти системы предполагают использование твердосплавных МНП с механическим креплением.
Следует отметить, что наличие в гибкой производственной системе центрального склада режущих инструментов имеет больше преимущества. Особенно это касается обработки широкого круга корпусных деталей, когда инструментов, установленных в магазине станка, может не хватать для обработки какой-либо конкретной заготовки.
Емкость центрального инструментального склада определяется номенклатурой обрабатываемых деталей, частотой использования инструментов и их стойкостью. Хранение инструментов в центральном складе осуществляется на специальных паллетах Что касается пристаночных магазинов, то их оптимальная емкость составляет 40...45 инструментов.
Доставка инструментов из центрального склада на станок и их замена в пристаночных магазинах осуществляется с помощью промышленных роботов, робокар и т.д.
При работе в автоматическом режиме особое значение приобретает вопрос определения работоспособности режущих инструментов. Этот сложный вопрос решают с помощью специальных приспособлений для контроля состояния инструмента и определения поломок, работа которых основана на различных методах: контроль тока в цепи главного привода, контактное ощупывание, контроль режущей кромки лазерным и инфракрасным излучением и т.д.