
- •Безкласова адресація за маскою. Зв’язок між класовою адресацією та значеннями маски. Чи передається маска через мережу разом з адресою?
- •Логіка динамічного перетворення nat із трансляцією портів ( overloading) . Чим обмежена кількість одночасних сеансів через такий nat ?
- •4. Як використовуються резервні шляхи у статичній маршрутизації? Завдання метрики для резервних шляхів за синтаксисом Cisco ios — показати приклад.
- •5. Як відбувається інформаційний обмін між маршрутизаторами для заповнення їхніх таблиць при динамічній маршрутизації? Показати приклад на деревоподібній топології.
- •6 .Як відбувається інформаційний обмін між маршрутизаторами для заповнення їхніх таблиць при динамічній маршрутизації? Показати приклад на топології із замкненими контурами.
- •7.Чим відрізняються «дистанційно-векторні протоколи» та «протоколи стану каналу» динамічної маршрутизації? Які з них кращі за яких умов?
- •8.Чим відрізняється протокол rip-V.2 від V.1? Як ці відміни відобразилися в форматі повідомлень?
- •9.Пояснити проблему доставки трафіку різних класів. Для чого потрібна класифікація трафіку?
- •10.Дати загальну характеристику протоколу eigrp, показати логіку інформаційного обміну. Чим схожі та чим відрізняються протоколи rip та eigrp?
- •Як розраховується метрика при розповсюдженні маршрутних записів у протоколі eigrp?
- •Логіка роботи протоколу ospf. В чому проявляється те, що він є протоколом “стану каналу” на відміну від дистанційно-векторних протоколів?
- •Види маршрутизаторів в протоколі ospf за їхнім функціональним призначенням. Стан маршрутизаторів, перехід між одним станом та іншим.
- •Типи повідомлень при інформаційному обміні в протоколі ospf. Формат повідомлень, межі їхнього розповсюдження.
- •Налагодження Cisco на роботу з протоколом ospf. Одержання інформації про актуальний стан маршрутизації ospf.
- •16. Логика динамического превращения nat с пулом внешним адресов. Как определяется нужный размер пула?
- •17. В каких случаях используется черный список доступа, в каких – белый? Привести характерную последовательность записей в обеих разновидностях списков и объяснить.
- •18. Отличия между стандартным и расширенным списками доступа. Правила формирования записей в этих списках. В каких случаях их лучше использовать?
- •19. Какие есть алгоритмы превращения адресаNat и в каких случаях они используются? Кратко охарактеризовать все алгоритмы.
- •20.Как выполняется маркировка трафика на требования QoS на II и III уровнях модели osi? Какая связь между метками CoS и dscp?Как транспортируются метки через сеть.
- •21.Для чого в протоколі ospf автономна система розділяється на зони? Які є різновиди зон, чим вони відрізняються одна від одної?
- •22.Механизм гарантированной доставки tcp
- •23.Адресация в ip сетях. Требования к адресам, типы адресов. Понятие и формы записи маски подсети. Виды адресации. Классовая адресация. Cidr.
- •24.Адресация в ip сетях. Требования к адресам, типы адресов. Отображение физических адресов на ip адреса
- •25.Маршрутизация в ip сетях. Доставка пакета между конечными узлами, расположенными в различных сегментах сети.
- •26. Маршрутизация в ip сетях. Статическая маршрутизация, маршрутизация по умолчанию
- •27. Протокол ip (iPv4, iPv6). Формы записи, форматы пакетов. Протоколы tcp, udp. Форматы сегментов, сравнение
- •28. Понятие маршрутизации, таблицы маршрутов,адреса сети,маска сети,шлюза,интерфейса,метрики,маршрут по умолчанию,домен,автономная система.
- •30.Протокол rip.Общая характеристика, логика работы, базовая настройка. Петля маршрутизации. Настройка протокола rip на оборудовании Cisco.
- •Протокол eigrp. Общее описание, отличие от протокола igrp. База данных eigrp: назначение таблиц, их содержимое, источники формирования.
- •Протокол eigrp. Расчет метрики. Настройка eigrp на маршрутизаторах Cisco, команды просмотра состояния протокола.
- •Протокол ospf. Общее описание, отличие от дистанционно-векторных протоколов. Определение метрики. Настройка на маршрутизаторах Cisco. Проверка состояния протокола.
- •34. Фильтрация трафика: назначение, устройства фильтрации. Формирование стандартного списка доступа.
- •35. Фильтрация трафика: назначение, устройства фильтрации. Конфигурация расширенных списков доступа.
- •Фильтрация трафика: назначение, устройства фильтрации. Конфигурация именованных списков доступа.
- •Протокол dhcp: назначение, описание, логика обмена. Способы «раздачи» адресов. Формат сообщения dhcp. Настройка dhcp-сервера на базе роутера.
- •Преобразование сетевых адресов. Назначение, преимущества, недостатки. Логика статической трансляции. Конфигурация статического nat.
- •Преобразование сетевых адресов. Назначение, преимущества, недостатки. Логика динамической трансляции. Конфигурация динамического nat.
- •Преобразование сетевых адресов с перегрузкой. Назначение, преимущества, недостатки. Разновидности. Конфигурация рat.
- •41.Качество обслуживания в сетях tcp/ip.Виды служб. Принципы. Механизмы обслуживания очередей.
- •42.Качество обслуживания в сетях tcp/ip. Механизмы управления очередями маршрутизатора.
- •43.Качество обслуживания в сетях tcp/ip. Виды трафика. Негарантированная доставка данных (best-effort service).
- •44. Качество обслуживания в сетях tcp/ip. Интегрированное и дифференцированное обслуживание (differentiated service).
- •45.Cisco ios. Структура. Разновидности памяти. Цикл жизни процесса. Программная коммутация.
42.Качество обслуживания в сетях tcp/ip. Механизмы управления очередями маршрутизатора.
С целью поддержки передачи голоса, видео и трафика данных приложений с различными требованиями к пропускной способности, системы ядра TCP/IP-сети должны обладать возможностью дифференцирования и обслуживания различных типов сетевого трафика в зависимости от предъявляемых ими требований. Негарантированная доставка данных не предполагает проведения какого-либо различия между тысячами потоков информации в ядре TCP/IP-сети. Для разрешения проблемы было введено понятие «качество обслуживания» (quality of service — QoS) в сетях TCP/IP. Функции качества обслуживания в сетях IP (IP QoS) заключаются в обеспечении гарантированного и дифференцированного обслуживания сетевого трафика путем передачи контроля за использованием ресурсов и загруженностью сети ее оператору.
Из очереди можно забирать пакеты с определенной скоростью, однако она все-же может перегружаться. Увеличение очереди приводит к снижению пропускной способности, уменьшение – к потерям пакетов.
AQM – advanced queue management – добавление пакетов по определенному алгоритму.
Самый простой способ – Drop Tail – отсечение хвоста, добавление пакетов, пока есть место в очереди.
Др способ – RED – random early detection – алгоритм случайного раннего обнаружения. Есть ограничения на макс длину очереди и на текущую длину – Qmax и q. Необходимо сгладить q – экспоненциальное сглаживание, qs – сглаженная очередь. Когда помещаем пакет в очередь – есть Qmax и qs (средняя длина очереди в текущий момент). Определяется вероятность, помести мы пакет в очередь или нет.
Пока qs<q1 – все пакеты поступают в очередь, qs>Qmax – места нет, все отбрасываются. Если q1<qs<Qmax – для заданных q1 и P2 генерируется случайное число и определяется, поступает пакет или нет.
Проблемы: - оптимальное значение q1 и P2 (q1=0.5…0.7Qmax, P2=0.3…0.5). Однако оптимальность очень сильно зависит от потока данных. Если есть участки с высокой интенсивностью и низкой – высокая пачечность – сильное сглаживание может быть или оч высокая чувствительность.
Разновидности – ARED (адаптивный) , VRED ( взвешенный).
43.Качество обслуживания в сетях tcp/ip. Виды трафика. Негарантированная доставка данных (best-effort service).
С целью поддержки передачи голоса, видео и трафика данных приложений с различными требованиями к пропускной способности, системы ядра TCP/IP-сети должны обладать возможностью дифференцирования и обслуживания различных типов сетевого трафика в зависимости от предъявляемых ими требований. Негарантированная доставка данных не предполагает проведения какого-либо различия между тысячами потоков информации в ядре TCP/IP-сети. Для разрешения проблемы было введено понятие «качество обслуживания» (quality of service — QoS) в сетях TCP/IP. Функции качества обслуживания в сетях IP (IP QoS) заключаются в обеспечении гарантированного и дифференцированного обслуживания сетевого трафика путем передачи контроля за использованием ресурсов и загруженностью сети ее оператору.
Виды трафика:
-Mission-Critical – критический трафик – требует наилучших условий передачи.
-Transactional – интерактивный трафик – голос и видеотелефония.
-Best Efforts – передача лучших усилий – Internet, e-mail и др.
-Less than BE – хуже, чем лучшее усилие – трафик файлообменных сетей (потребляет столько, сколько сможет).
Негарантированная доставка данных (best-effort service) - Абсолютное отсутствие механизмов QoS. Используются все доступные ресурсы сети без какого-либо выделения отдельных классов трафика и регулирования. Подход предполагает, что лучшим механизмом обеспечения QoS является увеличение пропускной способности . Плюсы : хорошо масштабируется, не нужно специальных механизмов. Минусы: гарантий и качества обслуживания не предоставляет.