- •167 Рациональные алгебраические уравнения
- •I. Рациональные алгебраические уравнения 5
- •6.5. Дробно-рациональные уравнения 118
- •I. Рациональные алгебраические уравнения
- •11. Равносильность уравнений
- •Ответ на этот вопрос дает теория равносильности уравнений
- •1.2. Равносильность уравнений на множестве
- •На множестве натуральных чисел
- •На множестве действительных чисел
- •На множестве действительных чисел
- •На множестве натуральных чисел
- •На множестве действительных чисел
- •На множестве целых чисел
- •1.3. Равносильность при тождественных преобразованиях
- •Обратите внимание на ниже приводимый пример! в таких примерах абитуриенты и учащиеся очень часто допускают ошибки!
- •Задание 1
- •1.4. Теоремы о равносильности уравнений
- •Равносильны ли уравнения на множестве действительных чисел?
- •Задание 2
- •Выводы Появление посторонних корней возможно в следующих случаях
- •Потеря корней возможна в следующих случаях
- •1.5. Приемы решения уравнений, позволяющие отбрасывать посторонние корни и избежать потери корней*
- •1.5.1. Дробно-рациональные уравнения
- •1.5.2. Иррациональные уравнения
- •Замена иррационального уравнения смешанной системой
- •Проверка
- •Возведение обеих частей уравнения в одну и ту же степень
- •Проверка
- •1.5.3. Логарифмические уравнения
- •Проверка
- •Проверка
- •Проверка
- •Задание 3
- •2. Линейные уравнения с параметрами
- •Возможные случаи решения линейных уравнений с параметрами
- •Задание 1
- •Упражнения
- •3. Линейные уравнения, содержащие знак абсолютной величины
- •3.1. Уравнения, содержащие знак абсолютной величины
- •Аналитическое решение
- •Графическое решение
- •Аналитическое решение
- •Графическое решение
- •Аналитическое решение
- •Графическое решение
- •Аналитическое решение
- •Графическое решение
- •Аналитическое решение
- •Графическое решение
- •Задание 2
- •Упражнения
- •4. Для любителей и знатоков. Кусочно-линейные функции и модули
- •Построение графиков функций вида
- •Упражнения
- •4. Решение и исследование квадратных уравнений
- •4.1. Квадратное уравнение с числовыми коэффициентами
- •Теорема Виета
- •Знаки корней приведенного квадратного уравнения
- •Разложение квадратного трехчлена на линейные множители
- •4.2. Решить и исследовать квадратные уравнения относительно параметров
- •Задание 1
- •4.3. Определение коэффициентов уравнения по зависимости между корнями
- •Решение
- •Задание 2
- •4.4. Установление зависимости между корнями двух уравнений. Еще один способ решения квадратного уравнения
- •Задание 3
- •4.5. Решить уравнения на множестве действительных чисел
- •Задание 4
- •4.6. Аналитическое и графическое решение квадратных уравнений, содержащих модули
- •Аналитическое решение
- •Графическое решение
- •Аналитическое решение
- •Графическое решение
- •Аналитическое решение
- •Графическое решение
- •Аналитическое решение
- •Графическое решение
- •Аналитическое решение
- •Графическое решение
- •Задание 5
- •4.7. Для любителей и знатоков. Решение уравнений повышенной трудности
- •Задание 6
- •Упражнения
- •5. Решение алгебраических уравнений выше второй степени
- •5.1. Многочлены и их корни
- •5.2. Деление многочленов
- •5.2.1. Схема деления углом
- •5.3. Корни многочлена
- •5.4. Схема Горнера
- •Задание
- •5.5. Возвратные уравнения
- •5.6. Возвратные уравнения второго рода
- •Задание 1
- •5.7. Возвратные уравнения нечетной степени
- •5.8. Уравнения, приводящиеся к возвратным
- •Задание 2
- •6. Частные методы решения алгебраических уравнений
- •Задание 3
- •6.2. Уравнения с параметрами
- •6.3. Решение уравнений вида , где - четное
- •Задание 4
- •6.4. Метод введения нового неизвестного (новой переменной)
- •Задание 5
- •6.5. Дробно-рациональные уравнения
- •Задание 6
- •6.6. Разные уравнения
- •Задание 7
- •7. Аналитическое и графическое решение уравнений
- •Аналитическое решение
- •Графическое решение
- •Аналитическое решение
- •Графическое решение
- •Аналитическое решение
- •Графическое решение
- •Задание 8
- •8. Некоторые нестандартные способы решения уравнений
- •9. Трехчленные уравнения
- •9.1. Трехчленные уравнения, приводящиеся к квадратным уравнениям
- •9.1.2. Исследование биквадратного уравнения
- •2. Биквадратное уравнение имеет один действительный корень, если:
- •3. Биквадратное уравнение имеет два действительных, равных по модулю, но противоположных по знаку, отличных от нуля корня, если:
- •Задание 1
- •9.1.2. Зависимости между корнями уравнения и его коэффициентами
- •Задание 2
- •10. Трехчленные кубические уравнения
- •Не всегда этот метод может дать положительный результат!
- •Задание 1
- •10.2. Полные кубические уравнения
- •Задание 2
- •11. Для любителей и знатоков
- •11.1. Решение кубических уравнений по формуле Кардано
- •11.2. Кубические уравнения с действительными коэффициентами
- •Задание 1
- •11.3. Уравнения четвертой степени
- •Замечания об уравнениях высших степеней
- •Упражнения
- •Ответы к заданиям и упражнениям к заданию 1, стр. 15
- •Ответы к заданиям и упражнениям главы "Трехчленные уравнения" Ответы к разделу 7 а "Трехчленные кубические уравнения" к заданию 1
- •К заданию 3
- •Литература
Графическое решение
Для
решения уравнения графическим способом,
надо построить графики функций
и
Для
построения графика функции
,
построим график функции
- это прямая, пересекающая ось OX
в точке (2; 0), а ось OY в
точке
а затем часть прямой, лежащую ниже оси
OX зеркально отразить в
оси OX.
Графиком
функции
является прямая, параллельная оси OX
и проходящая через точку (0; 3) на оси OY
(см. рис. 10).
Рис. 10
Абсциссы точек пересечения графиков функций дадут решения уравнения.
Ответ:
Пример 2. Решите аналитически и графически уравнение 1 + |x| = 0.5.
Решение
Аналитическое решение
Преобразуем уравнение: |x| = 0.5 - 1 или |x| = -0.5. Понятно, что в этом случае уравнение не имеет решений, так как, по определению, модуль всегда неотрицателен.
Ответ: решений нет.
Графическое решение
Преобразуем
уравнение:
Графиком
функции
являются лучи - биссектрисы 1-го и 2-го
координатных углов. Графиком функции
является прямая, параллельная оси OX
и проходящая через точку -0,5 на оси OY.
Рис. 11
Графики не пересекаются, значит уравнение не имеет решений (см. рис. 11).
Ответ: нет решений.
Пример 3. Решите аналитически и графически уравнение |-x + 2| = 2x + 1.
Решение
Аналитическое решение
1-й способ
Прежде следует установить область допустимых значений переменной. Возникает естественный вопрос, почему в предыдущих примерах не было необходимости делать этого, а сейчас она возникла.
Дело в том, что в этом примере в левой части уравнения модуль некоторого выражения, а в правой части не число, а выражение с переменной, - именно это важное обстоятельство отличает данный пример от предыдущих.
Поскольку
в левой части - модуль, а в правой части,
выражение, содержащее переменную,
необходимо потребовать, чтобы это
выражение было неотрицательным, т. е.
Таким образом, ОДЗ
Теперь можно рассуждать также, как и в примере 1, когда в правой части равенства находилось положительной число. Получим две смешанных системы:
(1)
и (2)
Решим каждую систему:
(1)
входит в промежуток
и является корнем уравнения.
(2)
x = -3 не входит в промежуток
и не является корнем уравнения.
Ответ:
2-й способ
Установим,
при каких значениях x
модуль в левой части уравнения обращается
в нуль:
Получим два промежутка, на каждом из которых решим данное уравнение (см. рис. 12):
Рис. 12
В результате будем иметь совокупность смешанных систем:
Решая полученные системы, находим:
(1)
входит в промежуток
и является корнем уравнения.
(2)
не входит в промежуток
и не является корнем уравнения.
Ответ:
Графическое решение
Для
графического решения уравнения, построим
графики функций
и
Чтобы
построить график функции
,
построим прямую
,
которая пересекает ось OX
в точке (0; 2), ось OY в точке
(2; 0), а затем полупрямую, лежащую ниже
оси OX симметрично отразим
в этой оси.
Графиком
функции
является прямая, пересекающая ось OX
в точке
,
а ось OY в точке (0; 1). Для
решения уравнения достаточно найти
абсциссы точек пересечения графиков
(см. рис. 13).
Рис. 13
Графики имеют одну точку пересечения с абсциссой
Ответ:
Пример 4. Решить аналитически и графически уравнение
|x - 2| + |x - 3| + |2x - 8| = 9.
Решение
