
- •1. Понятие коммутации. Виды коммутации. Коммутация каналов, сообщений и пакетов (данных).
- •2. Протокол. Иерархическая организация протоколов. Интерфейсы. Сервисные и протокольные блоки. Сервис, ориентированный на соединение и неориентированный на соединение.
- •3. Эталонная модель взаимодействия открытых систем.
- •4. Протокольный стек tcp/ip
- •6. Принципы передачи аналогового голосового сигнала по цифровым каналам
- •9. Проблема управления потоками в сетях и способы ее решения. Контроль ошибок. Виды arq.
- •10. Лвс и эталонная модель взаимодействия открытых систем. Понятие о методах доступа. Структура семейства стандартов ieee 802.
- •14. Fast Ethernet 100 base –t4. Особенности реализации физического уровня.
- •15. Понятие о Gigabit Ethernet Особенности реализации mac –уровня
- •16. Принципы организации межсетевых взаимодействий. Мосты, маршрутизаторы и шлюзы. (Назначение и общие характеристики ).
- •24. Особенности iPv6 адресации. Структура заголовка пакета iPv6.
- •25. Принципы мультиплексирования. Мультиплексирование на основе разделения частот и времени.
- •26. Каналы т1/е1. Понятие об иерархии цифровых каналов pdh. Принципы синхронизации в сетях pdh.
- •27. Сети sonet/sdh. Общие принципы функционирования сетей sonet/sdh. Протокольный стек.
- •30. Топология и оборудование сетей sonet/sdh
- •31 . Средства обеспечения надежности сетей sonet/sdh.
- •33. Сети Frame relay. Принципы функционирования. Структура протокольного стека.
- •Структура стека
- •37. Структура ячейки atm.
- •38 .Atm. Типы трафиков и классы Сервисов. Протоколы aal.
- •39. Атм. Категории сервисов. Параметры трафика и качества сервиса. Понятие о трафик контракте.
4. Протокольный стек tcp/ip
Стек TCP/IP на нижнем уровне поддерживает все популярные стандарты физического и канального уровней: для локальных сетей - это Ethernet, Token Ring, FDDI, для глобальных - протоколы работы на аналоговых коммутируемых и выделенных линиях SLIP, РРР, протоколы территориальных сетей Х.25 и ISDN.
Основными протоколами стека, давшими ему название, являются протоколы IP и TCP. Эти протоколы в терминологии модели OSI относятся к сетевому и транспортному уровням соответственно. IP обеспечивает продвижение пакета по составной сети, a TCP гарантирует надежность его доставки.
Сегодня стек TCP/IP представляет собой один из самых распространенных стеков транспортных протоколов вычислительных сетей.
Поскольку стек TCP/IP изначально создавался для глобальной сети Internet, он имеет много особенностей, дающих ему преимущество перед другими протоколами, когда речь заходит о построении сетей, включающих глобальные связи. В частности, очень полезным свойством, делающим возможным применение этого протокола в больших сетях, является его способность фрагментировать пакеты. Действительно, большая составная сеть часто состоит из сетей, построенных на совершенно разных принципах. В каждой из этих сетей может быть установлена собственная величина максимальной длины единицы передаваемых данных (кадра). В таком случае при переходе из одной сети, имеющей большую максимальную длину, в сеть с меньшей максимальной длиной может возникнуть необходимость деления передаваемого кадра на несколько частей. Протокол IP стека TCP/IP эффективно решает эту задачу.
Другой особенностью технологии TCP/IP является гибкая система адресации, позволяющая более просто по сравнению с другими протоколами аналогичного назначения включать в интерсеть сети других технологий. Это свойство также способствует применению стека TCP/IP для построения больших гетерогенных сетей.
В стеке TCP/IP очень экономно используются возможности широковещательных рассылок. Это свойство совершенно необходимо при работе на медленных каналах связи, характерных для территориальных сетей.
Однако, как и всегда, за получаемые преимущества надо платить, и платой здесь оказываются высокие требования к ресурсам и сложность администрирования IP-сетей. Мощные функциональные возможности протоколов стека TCP/IP требуют для своей реализации высоких вычислительных затрат. Гибкая система адресации и отказ от широковещательных рассылок приводят к наличию в IP-сети различных централизованных служб типа DNS, DHCP и т. п. Каждая из этих служб направлена на облегчение администрирования сети, в том числе и на облегчение конфигурирования оборудования, но в то же время сама требует пристального внимания со стороны администраторов.
Основная цель создания TCP/IP – разработка унифицированных способов межсетевого взаимодействия. Вторая цель – создание протоколов, независимых от характеристик отдельных машин.
1
2
3
4
Уровни:
реализованы аппаратные функции передачи данных и организации каналов;
реализованы методы доступа в сеть
в основе протокол IP;
сеть IP – сеть с коммутацией пакета;
основа всей архитектуры;
назначение – доставка пакетов;
задача IP-уровня – склейка пакетов
реализация двух протоколов: TCP и UDP (TCP – протокол с установлением соединения,
UDP – протокол без установления соединения)
взаимодействие с пользователем;
реализуются функции для установки сессий и представления данных.
5. Каналы связи, Структура, основные характеристики. Аналоговые и цифровые каналы.
Канал (линия) связи состоит в общем случае из физической среды, по которой передаются электрические информационные сигналы, аппаратуры передачи данных и промежуточной аппаратуры.
Физическая среда передачи данных (medium) может представлять собой кабель, то есть набор проводов, изоляционных и защитных оболочек и соединительных разъемов, а также земную атмосферу или космическое пространство, через которые распространяются электромагнитные волны.
Аппаратура передачи данных (АПД или DCE - Data Circuit terminating Equipment) непосредственно связывает компьютеры или локальные сети пользователя с линией связи и является, таким образом, пограничным оборудованием (модемы, терминальные адаптеры сетей ISDN, оптические модемы, устройства подключения к цифровым каналам).
Промежуточная аппаратура обычно используется на линиях связи большой протяженности. Промежуточная аппаратура решает две основные задачи:
улучшение качества сигнала;
создание постоянного составного канала связи между двумя абонентами сети.
К основным характеристикам линий связи относятся:
амплитудно-частотная характеристика;
полоса пропускания;
затухание;
помехоустойчивость;
перекрестные наводки на ближнем конце линии;
пропускная способность;
достоверность передачи данных;
удельная стоимость.
В первую очередь разработчика вычислительной сети интересуют пропускная способность и достоверность передачи данных, поскольку эти характеристики прямо влияют на производительность и надежность создаваемой сети.
Амплитудно-частотная характеристика показывает, как затухает амплитуда синусоиды на выходе линии связи по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала. Вместо амплитуды в этой характеристике часто используют также такой параметр сигнала, как его мощность.
Полоса пропускания (bandwidth) - это непрерывный диапазон частот, для которого отношение амплитуды выходного сигнала ко входному превышает некоторый заранее заданный предел, обычно 0,5.
Затухание (attenuation) определяется как относительное уменьшение амплитуды или мощности сигнала при передаче по линии сигнала определенной частоты. Вычисляется по следующей формуле: А = 10 log10 Рвых /Рвх,
где Рвых ~ мощность сигнала на выходе линии, Рвх - мощность сигнала на входе линии.
Пропускная способность канала (С) – максимально возможная скорость передачи:
C = W Log2(1+P(s)/P(n)) (Формула Шеннона)
Формула Шеннона показывает зависимость между пропускной способностью и ее полосой пропускания.
Пропускная способность измеряется в битах в секунду - бит/с, а также в производных единицах, таких как килобит в секунду (Кбит/с), мегабит в секунду (Мбит/с), гигабит в секунду (Гбит/с) и т. д. Пропускная способность линий связи и коммуникационного сетевого оборудования традиционно измеряется в битах в секунду, а не в байтах в секунду. Это связано с тем, что данные в сетях передаются последовательно, то есть побитно, а не параллельно, байтами, как это происходит между устройствами внутри компьютера.
Помехоустойчивость линии определяет ее способность уменьшать уровень помех, создаваемых во внешней среде, на внутренних проводниках. Помехоустойчивость линии зависит от типа используемой физической среды, а также от экранирующих и подавляющих помехи средств самой линии. Наименее помехоустойчивыми являются радиолинии, хорошей устойчивостью обладают кабельные линии и отличной - волоконно-оптические линии, малочувствительные ко внешнему электромагнитному излучению.
Перекрестные наводки на ближнем конце (Near End Cross Talk - NEXT) определяют помехоустойчивость кабеля к внутренним источникам помех, когда электромагнитное поле сигнала, передаваемого выходом передатчика по одной паре проводников, наводит на другую пару проводников сигнал помехи. Если ко второй паре будет подключен приемник, то он может принять наведенную внутреннюю помеху за полезный сигнал. Показатель NEXT, выраженный в децибелах, равен 10 log Рвых/Рнав, где Рвых - мощность выходного сигнала, Рнав - мощность наведенного сигнала.
Достоверность передачи данных характеризует вероятность искажения для каждого передаваемого бита данных. Иногда этот же показатель называют интенсивностью битовых ошибок (Bit Error Rate, BER). Величина BER для каналов связи без дополнительных средств защиты от ошибок (например, самокорректирующихся кодов или протоколов с повторной передачей искаженных кадров) составляет, как правило,10-4 - 10-6, в оптоволоконных линиях связи - 10-9. Значение достоверности передачи данных, например, в 10-4 говорит о том, что в среднем из 10000 бит искажается значение одного бита.
В зависимости от типа промежуточной аппаратуры все линии связи делятся на аналоговые и цифровые.
Аналоговый канал:
Время непрерывно
Непрерывный сигнал - бесконечное число состояний
Цифровой канал:
Время разбито на такты –time slots
В течение одного такта передается сигнал, имеющий конечное число четко различимых состояний (цифровой сигнал)