- •П.А. Трофимов «Автотроника»
- •Введение
- •1 Электронные системы энергоснабжения.
- •2 Электронные системы управления двс
- •2.1 Принципы управления
- •2.2 Основные режимы работы двс.
- •3 Система питания дизельных двигателей
- •3.1 Смесеобразование в дизельных двс
- •3.2 Элементы системы питания дизельных двс
- •3.3 Перспективные системы питания дизельных двигателей
- •4 Системы питания бензиновых двигателей
- •4.1 Датчики систем впрыска. Расходомеры воздуха.
- •Расходомер воздуха с измерительным диском (ротаметром).
- •Расходомер с потенциометрическим датчиком перемещения ротаметра.
- •Расходомер флюгерного типа.
- •Термоанемометрический расходомер массы воздуха.
- •Ультразвуковой расходомер воздуха.
- •Датчики абсолютного давления.
- •Датчики положения дроссельной заслонки.
- •Датчики положения коленчатого вала двс.
- •Датчики положения коленчатого вала двс.
- •Оптические датчики положения коленчатого вала двс.
- •Датчики температуры.
- •Датчики детонации.
- •Датчики кислорода.
- •4.2 Исполнительные механизмы Форсунки
- •Электробензонасосы.
- •Топливные фильтры.
- •Топливная рампа.
- •Регулятор давления топлива.
- •Система регулирования холостого хода.
- •Регулятор дополнительного воздуха.
- •Клапан рециркуляции выхлопных газов.
- •Катушки зажигания.
- •5. Системы управления подачей топлива
- •5.1 Система впрыска l-jetronic.
- •5.2 Система одноточечного впрыска топлива.
- •5.3 Комплексная система управления двс.
- •6. Применение мотор-тестера кад-300
Датчики положения коленчатого вала двс.
Кроме описанных выше датчиков в системах управления прыском и зажиганием обязательно используются датчики частоты- положения коленчатого вала двигателя.
Наибольшее распространение получили три типа датчиков – индукционные, на эффекте Холла и оптические.
В 80-х годах в транзисторных системах зажигания использовались индукционные датчики, устанавливаемые в распределителях зажигания. Для формирования сигнала частоты вращения коленчатого вала в микропроцессорных системах управления двигателем индукционные датчики устанавливаются в непосредственной близости от зубьев маховика или специального диска, закрепленного на коленчатом валу двигателя. В большинстве случаев маркерные диски имеют конструкцию, позволяющую при использовании всего одного датчика получить сигнал, содержащий информацию как о частоте вращения коленчатого вала, так и о его угловом положении. Для этого используют диск с одним или двумя пропущенными зубьями. Пропуск сигнала свидетельствует о моменте положения коленчатого вала в В.М.Т. первого цилиндра. На отечественных автомобилях каждый импульс ( за один оборот коленчатого вала их 58 ) соответствует углу поворота вала на 6 град., а пропущенные два импульса синхронизации –12 град.
Индуктивные датчики предназначены для определения углового положения коленчатого вала двигателя, синхронизации работы блока управления с рабочим процессом двигателя и определения частоты его вращения.
Датчик установлен в передней части двигателя с правой стороны. Устройство датчика показано на рис.26 а). Датчик представляет собой индуктивную катушку 5 с магнитом 1 и сердечником 4. Датчик работает совместно с зубчатым диском синхронизации 6, установленном на шкиве коленчатого вала. Прохождение мимо торца магнитопровода 4 датчика зубьев диска синхронизации 6, вызывает изменение магнитного потока в датчике. Изменение магнитного потока в свою очередь вызывает возникновение переменного электрического тока в катушке датчика. Возникающее переменное напряжение передается в блок управления ( рис.26 в ), который обрабатывает их с другими сигналами датчиков и формирует параметры электрических импульсов для работы форсунок и катушек зажигания.
Индукционные датчики обладают высокой надежностью, не требуют питания и обладают высокой нагрузочной способностью. Однако сигнал таких датчиков имеет сильную зависимость амплитуды от частоты вращения коленчатого вала. В статике он вообще отсутствует и проверить его исправность можно только по величине сопротивления обмотки – омметром. При прокрутке стартером амплитуда сигнала такого датчика составляет 0.1-1.0 В, а при работающем двигателе может достигать десятков вольт и в электронных блоках предусматривается ограничение сигнала датчика на уровне 6-10В.
При выходе из строя датчика положения коленчатого вала или его цепей прекращается работа системы зажигания и соответственно двигателя.
Исправность датчика можно проверить омметром. Сопротивление катушки датчика должно находиться в пределах 850-900 Ом. Нормальная работа датчика обеспечивается при зазоре между сердечником датчика и зубьями диска синхронизации в пределах 1+0,5 мм.
Более качественную проверку исправности датчика необходимо производить прибором DST-2 или мотор-тестером КАД-300 при прокрутке двигателя стартером. Неисправный датчик подлежит замене.
Рис.26. Конструкция (а) и сигнал (б) индукционного датчика (BMW 735i, режим холостого хода):
1 — постоянный магнит; 2 — корпус; 3 — стенка блока цилиндров или картера КП; 4 — сердечник; 5 — обмотка; 6 — маркерный диск.
В большинстве случаев маркерные диски имеют конструкцию, позволяющую при использовании всего одного датчика получить сигнал, содержащий информацию как о частоте вращения коленчатого вала, так и о его положении. Примером таких датчиков может служить датчик, изображенный на рис.26.
Однако в некоторых случаях применяют другое решение- в качестве маркерного диска используется зубчатый венец маховика, а для получения сигнала синхронизации используется специальный штифт и второй индукционный датчик как это показано на рис.27.
Рис.27 Расположение (а) и сигналы (б) раздельных датчиков положения и частоты вращения коленчатого вала:
1 — датчик положения коленчатого вала; 2 — датчик частоты вращения коленчатого вала, 3 — зубчатый венец маховика, 4 — маркерный штифт
