
- •Розроблено:
- •2. Виконавець:
- •Лекція № 1
- •Вступ до фізичної хімії, розвиток фізичної хімії.
- •Лекція № 3
- •Рідкий стан речовини. Поверхневий натяг, в'язкість.
- •Твердий стан речовини. Кристалічний і аморфний стан.
- •Лекція № 4
- •Основи хімічної термодинаміки.
- •Перший закон термодинаміки.
- •Закон Гесса і наслідки з нього.
- •II закон термодинаміки.
- •Лекція № 5
- •Фазові рівноваги. Загальні умови. Правило фаз.
- •Загальна характеристика і властивості розчинів
- •Лекція № 6
- •Фізичні властивості розчинів, дифузія, осмос.
- •Лекція № 7
- •Закони Рауля для відносного зниження тиску над розчином
- •Розчинення в розчинах електролітів
- •Закон Рауля для підвищення температури кипіння і зниження температури замерзання
- •Хімічна рівновага. Принцип Ле – Шательє
- •Лекція № 9
- •Типи хімічних реакцій
- •Лекція № 10
- •Лекція № 11
- •Електропровідність електролітів. Питома, еквівалентна і загальна.
- •Лекція № 12
- •Електрорушійні сили. Гальванічний елемент.
- •Лекція № 13
- •Дифузійний потенціал.
- •Потенціометричні визначення концентрації водневих розчинів.
- •Для виділення 1 кг речовини, потрібно пропустити через електроліт одну й ту ж кількість електрики, її позначають буквою f і називають числом Фарадея.
- •Лекція № 14
- •Колоїдна хімія. Вступ, загальна характеристика, класифікація.
- •Лекція № 15
- •Поверхневі явища. Сорбційні процеси, їх класифікація, адсорбція на межі різноманітних фаз.
- •Адсорбція тверде тіло –газ.
- •Лекція № 16
- •Адсорбція на межі тверде тіло – розчин.
- •Адсорбція на межі розчин – розчин.
- •Лекція № 17
- •Адсорбція електролітів
- •Адсорбція на межі розчин – газ.
- •Лекція № 18
- •Отримання колоїдних систем різними методами. Особливі властивості колоїдних систем по відношенню до істинних розчинів.
- •Методи очищення дисперсних систем.
- •Електролітичні властивості. Дослід Рейса. Електрофорез та електроосмос, їх практичне застосування.
- •Лекція № 19
- •Молекулярне - кінетичні властивості колоїдних систем
- •Лекція № 20
- •Оптичні властивості колоїдних розчинів. Ефект Тиндаля.
- •Лекція № 21
- •Будова міцели гідрозолю. Будова подвійного електричного шару.
- •Будова міцели золю.
- •Лекція № 22
- •Коагуляція гідрофобних золей електролітами. Поріг коагуляції. Практичне застосування коагуляції
- •Лекція № 23
- •Колоїдні поверхнево - активні речовини.
- •Вільнодисперсні системи, їх в'язкість. Зв'язанодисперсні системи, гелеутворення та пептизація.
- •Лекція № 24
- •Загальна характеристика суспензій. Агрегативна стійкість, коагуляція суспензій. Методи отримання.
- •Грубодисперсні (мікрогетерогенні) системи – емульсії.
- •Лекція № 25
- •Лекція № 26
- •Лекція № 27
- •Високомолекулярні сполуки вмс
- •Лекція № 28
- •Набухання в технології харчових виробництв.
- •Перелік літератури
Вільнодисперсні системи, їх в'язкість. Зв'язанодисперсні системи, гелеутворення та пептизація.
Вільнодисперсними називають колоїдні системи, в яких частинки знаходяться на великій відстані одна від одної і практично не взаємодіють одна з одною.
За властивостями такі колоїдні системи дуже схожі на звичайні рідини, їх в'язкість мало відрізняється від в'язкості дисперсного середовища та трохи збільшується з ростом вмісту дисперсійної фази. В'язкість колоїдного розчину зв'язана із вмістом дисперсної фази таким рівнянням:
= 0 ( + к)
де, - в'язкість колоїдного розчину
0 - в'язкість дисперсного середовища
- дисперсної фази л І мл. розчину
к - константа, що визначається формою частинок
Для сферичних частинок к = 2, 5
Якщо форма частинок буде іншою - паличкоподібною або пластинчатою - то к збільшується.
Зв'язанодисперсними системами називають системи, в яких частинки зв'язані одна з одною міжмолекулярними силами і внаслідок цього не можуть взаємно рухатися.
Частинки дисперсної фази в таких системах утворюють просторову структуру. В залежності від природи діючих між частинками сил відрізняють два типи структур:
1. коагуляційні
2. конденсаційне - кристалізаційні.
Коагуляційні структури утворюються у тому випадку, коли під дією будь - яких причин агрегативна стійкість колоїдної системи знижується, але не зовсім зникає. Перехід колоїдного розчину з вільнодисперсного стану у зв'язанодисперсний називають гелеутворенням, а утворені при цьому структуровані колоїдні системи називають гелями.
Якщо колоїдні частинки повністю втрачають агрегативну стійкість, то вони будуть з'єднуватися у крупні агрегати, утворюючи густий осад - коагулят, а не рихлу структуру колоїдних частин - гель.
Гелеутворення може бути визнано додаванням електролітів, збільшенням концентрації золя, зниженням температури. Із збільшенням концентрації електроліту знижується агрегативна стійкість, збільшення часткової концентрації золя веде до зростання числа контактів між частинками, із зниженням температури знижується інтенсивність броунівського руху та стійкість просторих міцелярних структур збільшується.
Коагуляційні структури мають властивість відновлюватися після їх руйнування внаслідок будь - якої механічної дії. Ця властивість структурованих систем називають тиксотропією. Гель можливо перевести у золь, внаслідок додавання до нього електроліту – стабілізатора, цей процес називають пептизацією.
гелеутворення
г
ель
золь
п
ептизація
При додаванні до гелю електроліту - пептизатора, іони його, сортируючись на частинках, відновлюють подвійний електричний шар і на кінцях частинок. Зчеплення між частинками порушається, міцелярна структура руйнується і гель перетворюється у золь.
З часом гелі починають стискатись, зменшуються в об'ємі та при цьому виділяють дисперсне середовище. Це явище називається синерезисом.
Для характеристики витікання структурованих рідин може бути застосовано рівняння Шведова - Бінгама:
Р-
=
де, - межа текучості
- пластична в’язкість
- градієнт швидкості
За рівнянням Шведова - Бінгама залежність градієнта швидкості від потуги зсуву повинна виражатися прямою, та дійсно, багато структурованих систем добре підпорядковується, але для більшості структурованих систем залежність градієнту швидкості від потуги здвигу має більш складний характер. Це пояснюється тим, що в коагуляційній структурі можуть протікати одночасно 2 процеси: процес руйнування структури та процес ії відновлення.
При малих швидкостях витікання структура руйнується мало, а зруйновані зв’язки швидко відновлюються. У цьому випадку рідина витікає без руйнування мури і в'язкість її постійна, і достатньо велика. Це явище називається повзучістю. При дуже великих швидкостях витікання структура повністю. Її відновлення йде дуже повільно, що не має впливу на характер витікання.