
- •1 Раздел.
- •1.Вероятностный эксперимент. Пространство элементарных событий.
- •2.Дискретные и непрерывные пространства элементарных событий. Примеры.
- •3.Случайные события: определение, примеры.
- •4.Классификация событий.
- •5.Операции над событиями.
- •6.Сумма и произведение случайных событий.
- •7.Разность событий, противоположные события.
- •8. Определение вероятности, аксиомы Колмогорова.
- •9.Относительные частоты, их свойства.
- •10.Классический метод вычисления вероятности.
- •11.Элементы комбинаторики и тв
- •12. Статистический метод вычисления вероятности.
- •13. Аксиоматический метод задания вероятности.
- •14. Свойства вероятностей.
- •15. Условные вероятности. Аксиомы Колмогорова (для случая условных вероятностей).
- •16. Независимость событий (для двух и для трёх событий).
- •17. Теоремы умножения вероятностей (для двух и для трёх событий). Условия их применения.
- •18. Теоремы сложения вероятностей (для двух и для трёх событий). Условия их применения.
- •19. Формула полной вероятности.
- •20. Формула Байеса.
- •21. Схема испытаний Бернулли.
- •22. Формула Бернулли. Наиболее вероятное число наступления «успехов» в схеме.
- •23. Локальная теорема Муавра-Лапласа
- •24. Интегральная теорема Муавра-Лапласа
- •25. Теорема Пуассона
- •2 Раздел.
- •1.Определение случайной величины, типы случайных величин, примеры. Закон распределения вероятностей случайной величины.
- •2.Фукция распределения вероятностей случайных величин, ее свойства.
- •3.Типы случайных величин. Примеры.
- •4.Дискретная случайная величина. Как можно задать закон распределения дискретной случайной величины?
- •5.Непрерывная случайная величина. Что называется плотностью распределения вероятностей?
- •6.Взаимосвязь между функцией распределения и плотностью распределения.
- •7.Свойства плотности распределения.
- •8.Числовые характеристики распределения случайной величины.
- •9.Математическое ожидание случайной величины, ее свойства.
- •10.Мода случайной величины.
- •11.Медиана случайной величины, геометрический смысл медианы.
- •12.Дисперсия случайной величины, ее свойства. Среднее квадратическое отклонение.
- •13.Коэффициент асимметрии.
- •14.Коэффициент эксцесса.
- •2.Статистический закон распределения дискретной случайной величины.
- •3.Статистический закон распределения непрерывной случайной величины.
- •4.Графическое изображение статистических законов распределения.
- •5.Точечные оценки числовых характеристик: математического ожидания, моды, медианы.
- •7.Статистические гипотезы. Параметрические и непараметрические гипотезы.
- •8.Статистические гипотезы. Нулевая и альтернативная гипотеза.
- •9.Проверка статистических гипотез. Статистический критерий значимости. Примеры статистических критериев.
- •10.Область допустимых значений и критическая область статистического критерия.
- •11.Ошибки, совершаемые при проверке статистических гипотез. Уровень значимости статистического критерия.
- •12. Непараметрические статические гипотезы. Гипотеза о виде закона распределения.
- •13. Проверка гипотезы о виде закона распределения. Критерий Пирсона.
- •14. Интервальные оценки параметров распределения
- •15. Доверительная вероятность, доверительный интервал.
- •16. Доверительные Интервалы для математического ожидания нормально распределенной случайной величины
- •17. Функциональная, статистическая, регрессионная зависимость.
- •18. Корреляционное поле. Выбор модели регрессионной зависимости.
- •20.Коэффициент корреляции, его свойства.
- •21.Проверка значимости коэффициента корреляции.
- •22. Построение нелинейного выборочного уравнения регрессии.
- •24.Проверка значимости коэффициента детерминации.
- •25.Для чего применяется метод наименьших квадратов в регрессионном анализе?
10.Мода случайной величины.
Модой дискретной случайной величины X (обозначается xmod) называется ее наиболее вероятное значение, то есть то значение, для которого вероятность pi достигает максимума. Моду дискретной случайной величины можно определить графически по столбцовой диаграмме, как абсциссу столбца, имеющего наибольшую высоту.
Модой непрерывной случайной величины X (обозначается xmod) называется то ее возможное значение, которому соответствует локальный максимум плотности распределения. В частности, если распределение имеет два максимума, то распределение называется двумодальным.
11.Медиана случайной величины, геометрический смысл медианы.
Медианой
случайной величины X
называется такое ее значение xmed,
для которого P(X < xmed) = P(X xmed) = 0,5,
то есть одинаково вероятно, примет ли
случайная величина значение, большее
или меньшее медианы. Геометрически:
медиана – это координата той точки
на оси абсцисс, для которой площади
фигур, ограниченных кривой f(x)
и осью абсцисс, находящихся слева и
справа от неё, одинаковы и равны 0,5.
Учитывая определение функции распределения,
.
Эта характеристика применяется, как правило, только для непрерывных случайных величин. Для дискретных случайных величин множество значений х, удовлетворяющих свойству медианы , либо бесконечно, либо является пустым.
Очевидно, что характеристики положения (математическое ожидание, мода и медиана) имеют такую же размерность, как и сама случайная величина.
12.Дисперсия случайной величины, ее свойства. Среднее квадратическое отклонение.
Дисперсия является мерой рассеивания значений случайной величины относительно ее математического ожидания. Для дискретных и непрерывных случайных величин дисперсию можно вычислить соответственно по формулам
В механической интерпретации дисперсия представляет собой момент инерции распределения масс относительно центра масс (математического ожидания). Если говорить о форме кривой плотности распределения, то дисперсия характеризует степень ее «размазанности» по оси Ox. Чем больше величина D[X], тем более «размазанным» выглядит соответствующее распределение.
Свойства дисперсии:
а) дисперсия постоянной величины равна нулю:
D[C] = 0;
б) постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:
D[CX] = C2D[X];
в) дисперсия алгебраической суммы нескольких независимых случайных величин равна сумме их дисперсий. Например, для трех случайных величин X1, X2 и X3
D[X1 Х2 Х3] = D[X1] + D[Х2] + D[Х3];
г) D[С Х] = D[X].
13.Коэффициент асимметрии.
Коэффициент асимметрии (обозначается A[X]) характеризует скошенность распределения случайной величины относительно математического ожидания. Для симметричных относительно математического ожидания распределений A[X] = 0. Если в распределении случайной величины преобладают положительные отклонения, то A[X] > 0, если отрицательные, то A[X] < 0. На рисунке 11 изображены графики функций плотности распределения вероятностей с положительным и отрицательным значениями A[X], а также график симметричного распределения. Значение коэффициента асимметрии для дискретных и непрерывных случайных величин вычисляется, соответственно по формулам
;
.