
- •1 Раздел.
- •1.Вероятностный эксперимент. Пространство элементарных событий.
- •2.Дискретные и непрерывные пространства элементарных событий. Примеры.
- •3.Случайные события: определение, примеры.
- •4.Классификация событий.
- •5.Операции над событиями.
- •6.Сумма и произведение случайных событий.
- •7.Разность событий, противоположные события.
- •8. Определение вероятности, аксиомы Колмогорова.
- •9.Относительные частоты, их свойства.
- •10.Классический метод вычисления вероятности.
- •11.Элементы комбинаторики и тв
- •12. Статистический метод вычисления вероятности.
- •13. Аксиоматический метод задания вероятности.
- •14. Свойства вероятностей.
- •15. Условные вероятности. Аксиомы Колмогорова (для случая условных вероятностей).
- •16. Независимость событий (для двух и для трёх событий).
- •17. Теоремы умножения вероятностей (для двух и для трёх событий). Условия их применения.
- •18. Теоремы сложения вероятностей (для двух и для трёх событий). Условия их применения.
- •19. Формула полной вероятности.
- •20. Формула Байеса.
- •21. Схема испытаний Бернулли.
- •22. Формула Бернулли. Наиболее вероятное число наступления «успехов» в схеме.
- •23. Локальная теорема Муавра-Лапласа
- •24. Интегральная теорема Муавра-Лапласа
- •25. Теорема Пуассона
- •2 Раздел.
- •1.Определение случайной величины, типы случайных величин, примеры. Закон распределения вероятностей случайной величины.
- •2.Фукция распределения вероятностей случайных величин, ее свойства.
- •3.Типы случайных величин. Примеры.
- •4.Дискретная случайная величина. Как можно задать закон распределения дискретной случайной величины?
- •5.Непрерывная случайная величина. Что называется плотностью распределения вероятностей?
- •6.Взаимосвязь между функцией распределения и плотностью распределения.
- •7.Свойства плотности распределения.
- •8.Числовые характеристики распределения случайной величины.
- •9.Математическое ожидание случайной величины, ее свойства.
- •10.Мода случайной величины.
- •11.Медиана случайной величины, геометрический смысл медианы.
- •12.Дисперсия случайной величины, ее свойства. Среднее квадратическое отклонение.
- •13.Коэффициент асимметрии.
- •14.Коэффициент эксцесса.
- •2.Статистический закон распределения дискретной случайной величины.
- •3.Статистический закон распределения непрерывной случайной величины.
- •4.Графическое изображение статистических законов распределения.
- •5.Точечные оценки числовых характеристик: математического ожидания, моды, медианы.
- •7.Статистические гипотезы. Параметрические и непараметрические гипотезы.
- •8.Статистические гипотезы. Нулевая и альтернативная гипотеза.
- •9.Проверка статистических гипотез. Статистический критерий значимости. Примеры статистических критериев.
- •10.Область допустимых значений и критическая область статистического критерия.
- •11.Ошибки, совершаемые при проверке статистических гипотез. Уровень значимости статистического критерия.
- •12. Непараметрические статические гипотезы. Гипотеза о виде закона распределения.
- •13. Проверка гипотезы о виде закона распределения. Критерий Пирсона.
- •14. Интервальные оценки параметров распределения
- •15. Доверительная вероятность, доверительный интервал.
- •16. Доверительные Интервалы для математического ожидания нормально распределенной случайной величины
- •17. Функциональная, статистическая, регрессионная зависимость.
- •18. Корреляционное поле. Выбор модели регрессионной зависимости.
- •20.Коэффициент корреляции, его свойства.
- •21.Проверка значимости коэффициента корреляции.
- •22. Построение нелинейного выборочного уравнения регрессии.
- •24.Проверка значимости коэффициента детерминации.
- •25.Для чего применяется метод наименьших квадратов в регрессионном анализе?
9.Относительные частоты, их свойства.
Относительной частотой события называют отношение числа испытаний, в которых событие появилось, к общему числу фактически произведенных испытаний. Таким образом, относительная частота события А определяется формулой:
W (А) = m / n,
где m - число появлений события, n - общее число испытаний.
Сопоставляя определения вероятности и относительной частоты, можно заключить: определение вероятности не требует, чтобы испытания производились в действительности; определение же относительной частоты предполагает, что испытания были произведены фактически. Другими словами, вероятность вычисляют до опыта, а относительную частоту - после опыта.
Длительные наблюдения показали, что если в одинаковых условиях производят опыты, в каждом из которых число испытаний достаточно велико, то относительная частота обнаруживает свойство устойчивости. Это свойство состоит в том, что в различных опытах, относительная частота изменяется мало (тем меньше, чем больше произведено испытаний), колеблясь около некоторого постоянного числа. Оказалось, что это постоянное число есть вероятность появления события.
Таким образом, если опытным путем установлена относительная частота, то полученное число можно принять за приближенное значение вероятности.
10.Классический метод вычисления вероятности.
Если пространство элементарных событий некоторого эксперимента состоит из конечного числа элементов 1, 2, …, n, причём все исходы являются равновозможными, то есть
P(1) = P(2) = … = P(n),
то для определения вероятности любого события A, связанного с данным экспериментом, можно воспользоваться так называемым классическим методом определения вероятности, согласно которому вероятность любого события A определяется по формуле
(1)
где m – число элементарных исходов, благоприятных событию A;
n – общее число исходов пространства элементарных событий .
Ограничения классического способа:
а)
все элементарные исходы вероятностного
эксперимента Е должны быть равновозможными,
то есть
=
,
для любых
;
б) множество всех элементарных исходов пространства должно быть конечным. Например, классический метод нельзя применить для вычисления вероятности того, что монета выпадет при втором подбрасывании монеты для примера 4:
Е: Подбрасывание монеты до тех пор, пока на ней не выпадет герб.
= {Г, РГ, РРГ, РРРГ, РРРРГ, РРРРРГ, … }. В данном случае пространство бесконечно.
11.Элементы комбинаторики и тв
Комбинаторика – это раздел математики, в котором изучаются способы подсчета числа элементов в конечных множествах. Формулы комбинаторики используют при непосредственном вычислении вероятностей.
Размещениями
(или упорядоченными выборками без
возвращения) называют
множества, составленные из п
различных
элементов по т
элементов,
которые отличаются либо составом
элементов, либо их порядком. Число всех
возможных размещений определяется
формулой
(читается
размещения
m
элементов из n).
Сочетаниями
(или неупорядоченными выборками без
возвращения) из
п
различных
элементов по т
называются
множества, содержащие т
элементов
из числа п
заданных,
и которые отличаются хотя бы одним
элементом. Число сочетаний из п
элементов
по т
обозначают:
.
Это число выражается формулой
(читается
сочетания
m
элементов из n).
Отметим,
что числа перестановок, размещений и
сочетаний связаны равенством.
Упорядоченные
выборки, элементы которых могут
повторяться, называют упорядоченными
выборками с возвращениями.
Число всех возможных способов выбора
т
элементов
из п
элементов определяется формулой
.
Неупорядоченные
выборки, элементы которых могут
повторяться, называют неупорядоченными
выборками с возвращениями.
Число всех возможных способов выбора
т
элементов
из п
элементов определяется формулой
.
Для вычисления числа комбинаций удобно пользоваться таблицей - Способы выбора m элементов из n элементов:
Выборка |
Упорядоченная |
Неупорядоченная |
С повторением (с возвращением) |
|
|
Без повторения (без возвращения) |
|
|