
- •1.Распространение колебаний в упругих средах.Поперечные и продольные волны.
- •2.Звуковые волны.Скорость звука.Ультразвук.
- •3) Электромагнитные волны.Свойства электромагнитных волн.
- •4.Опыты Герца.Открыт колеб контур.
- •5.Изобретение радио а.С.Поповым.Принцип радиотелефонной связи.
- •6.Простейший радиоприемник.Понятие о радиолакации.
- •7.Свет как Эл-магнитные волны.Скорость света.Опыт Майкельсона.
- •8.Шкала Эл-магнитных волн ( ик, уф, рентгеновское, γ-излучение).
- •9.Спектры испускания и их виды.Спектры поглощения.
- •10.Спектральный анализ, его положения.
- •11. Интерференция света.Условия наблюден интерференц.Когерентность.
- •12.Получение когерентных волн.Опыт Юнга.Оптическая разность хода.
- •13.Применение интерференции в технике.
- •14.Дифракция света.Дифракционная решетка.
- •15.Световые явления на границе раздела двух прозрачных сред.Законы отражения света.
- •16.Законы преломления света.
- •17.Полное отражение света.Предельный угол полного отражения.
- •18.Дисперсия света.Опыт Ньютона. Цвета тел.
- •1 9.Линзы. Типы линз. Основн характер линзы.
- •20.Оптич сила в линзах.Формула линзы.Правило знаков.
- •21.Построения в линзах.
- •23.Ход луча через призму.
- •24.Постулаты теории относительности.
- •25.Релятивистская трактовка длины и t.Зависимость масы от скорости.Закон взаимосвязи массы и е.
- •26.Квантовая природа света.Гипотеза Планка.Энерг маса и ампулс фотона.
- •27.Внешний фотоэфект.Опыты Столетова.
- •2 8.Вольтамперная характеристика фотоэфекта.
- •29.Законы фотоэфекта.
- •30.Применение фотоэфекта.
- •31.Уравнен Эйнштейна для фотоэфекта.Объяснение фотоэфекта на основе квантовой теории.
- •32.Корпускулярно-волновой дуализм.Волновые свойства электрона.
- •33.Ядерная модель атома.Опыт Резерфорда.Неспособность класической физики объяснить устойчивость атомов и излучение атомами элмагнитных волн.
- •34.Объяснение излучения и поглощения е атомами на основе квантовой теории Бора.
- •35.Квантовые постулаты Бора.Строение атома по Бору.Трудности теории Бора.
- •36.Свойства молекул.
- •37.Линейное тепловое расширение твердых тел. Коэфицент линейного расшир тел.
- •38.Объемное тепловое расширение тверд тел. Связь между α и γ.Особености теплового расширения воды.
- •39.Термодинамическое равновесие.Термодинамич параметры системы.Температура. Температурная шкала Кельвина. Абсолютный нуль.
- •44.Универсальная газовая постоянная.Плотность газа.
- •45.Работа газа в термодинамике.
- •46.Понятие внутренней энергии в термодинамике.Способы изменения внутренней энергии.
- •47.Первое начало термодинамики.
- •48.Фазовые превращения.Уравнение теплового баланса.
- •49.Применение 1-ого начала термодинамики к изопроцессам.
- •50.Адиабатный процесс.
- •51.Принципиальная схема устройства тепловой машины.
- •53.Основные положения мкт вещества.Диффузия.Броуновское движение.
- •54.Взаимодействие молекул.Природа сил молекулярного взаимодействия.График зависимости их от расстояния.
- •55.Постоянная Авогадро.Количество вещества.
- •56.Идеальный газ.Основное уравнение мкт идеального газа.
- •57.Молекулярно-кинетический смысл температуры. Энергия и скорость теплового движения молекул.
- •58.Испарение и конденсация.Насыщенные и ненасыщенные пары.
- •59.Кипение.Зависимость температуры кипения от давления.
- •60.Влажность воздуха.Точка росы.
- •61.Электрический ток в газах.Зависимость тока в газах от напряжения.
- •63.Двухэлектродная лампа (диод).Триод.
- •64.Электронные пучки.Эектронно-лучевая трубка и ее использование.
- •65.Строение жидкостей.Поверхностное натяжение.Коэффициент поверхностного натяжения.
- •66.Методы определения коэффициента поверхностного натяжения.
- •67.Явление смачивания и несмачивания.Краевой угол.
- •68.Капиллярные явления.Капиллярность в быту, природе, технике.
- •69.Электрический ток в жидкостях.Электролиз, его техническое применение.
- •70.Законы Фарадея для электролиза.
- •71.Характеристики твердого состояния вещества.Виды кристаллических структур.
- •72.Аморфные тела.
- •73.Жидкие кристаллы.
- •74.Полимеры.
- •75.Механические свойства твердых тел.Закон Гука.Модуль Юнга.
- •76.Сравнительная характеристика диэлектриков, проводников и полупроводников.
- •77.Строение полупроводников.Зависимость проводимости полупроводников от температуры и освещенности.
- •78.Собственная и примесная проводимости полупроводников.
- •79.Электронно-дырочный переход.
- •80.Полупроводниковый диод.Транзистор.
- •81.Магнитные свойства вещества.Три класса магнитных веществ.
- •82.Природа диамагнетизма, парамагнетизма и ферромагнетизма.
- •83.Ферромагнетики.Основные свойства ферромагнетиков.Применение ферромагнетиков.
- •84.Протонно-нейтронная модель ядра атома.Нуклоны.Изотопы.
- •85.Ядерные силы.Энергия связи ядра.Дефект массы.
- •89.Ядерные реакции.
- •90.Закон радиоактивного распада.Период полураспада.
- •91.Поглощенная доза излучения.
- •92.Деление тяжелых атомных ядер.Цепная реакция деления.
- •93.Управляемая ядерная реакция. Ядерный реактор.
- •94.Элементарные частицы и их свойства.
48.Фазовые превращения.Уравнение теплового баланса.
Процесс фазового перехода из жидкого состояния в газообразное или из твердого тела в жидкое может происходить только при сообщении веществу некоторого количества теплоты. Обратные фазовые переходы сопровождаются выделением такого же количества теплоты. Количество теплоты, поступающее в систему или выделяющееся из нее, изменяет ее внутреннюю Е. Фазовые переходы идут при постоянных t которые наз t кипения и t плавления. Количество теплоты необходимое для превращения жидкости в пар или выделяемое при конденсации наз теплотой парообразования:Q=Lm, где L=ΔQ/m – удельная теплота парообразования = количеству теплоты необходимому для превращения в пар единицы массы жидкости, находящейся при температуре кипения: [L]=1Дж/1кг. Количество теплоты, необходимое для плавления тела или выделяемое при кристаллизации наз теплотой плавления: Q=mλ, где λ=ΔQ/m – удельная теплота плавления = количеству теплоты необходимому для плавления единицы массы тела находящегося при температуре плавления: [λ]=1ДЖ/1кг. Удельные теплоты парообразования и плавления наз также скрытыми теплотами, поскольку при фазовых переходах температура системы не меняется несмотря на то что теплота к ней подводится. Количество теплоты, выделяемое при сгорании топлива массой m, наз теплотой сгорания топлива Q=qm, где q=ΔQ/m – удельная теплота сгорания топлива, величина показывающая какое количество теплоты ΔQ выделяется при полном сгорании топлива массой 1 кг: [q]=1Дж/1кг. В соответствии с законом сохранения Е для замкнутой системы тел, в которой не происходит никаких превращения энергии, кроме теплообмена, количество теплоты, отдаваемое более нагретыми телами, равно количеству теплоты, получаемому более холодными. Теплообмен пркращается в состоянии термодинамического равновесия, т.е. когда температура всех тел системы становится одинаковой. Уравнение теплового балланса: В замкнутой системе тел алгебраическая сумма количеств теплоты, отданных и полученных всеми телами, участвующими в теплообмене равна нулю: Q1+Q2+...+Qn=0. В зависимости от условий задачи каждое слагаемое уравнения может быть как положительным, так и отрицательным. Общее правило знаков следующее: количество теплоты, полученное телом, считают положительным, а отданное – отрицательным.
49.Применение 1-ого начала термодинамики к изопроцессам.
Изохорный процесс (V=const). Если объем газа не меняется, то никакой механической работы ни над газом, ни самим газом не совершается. =>Q=U. Таким образом при изохорном процесе все сообщенное газу количество теплоты расходуется на изменение его внутренней Е. Изобарный процесс (p=const). При изобарном процесе будет иметь место и нагревание (охлаждение) газа, и совершение им (над ним) работы). Согласно первому началу термодинамики Q=U+A, т.е. при изобарном процесе колич теплоты, сообщенное системе расходуется на изменение внутренней E и на совершение системой работы. Изотермический процесс (T=const). Т. к. при неизменной температуре внутренняя энергия газа не изменяется, тоQ=A. Таким образом при изотермич процессе все сообщенное газу количество теплоты расходуется на совершение работы. Отсюда следует, что если ΔQ>0, то А<0, т.е. над газом совершается работа. Это означает, что процесс охлаждения газа должен сопровождаться совершением работы над ним.