
- •4. Основные группы прогнозов. Основные принципы прогнозирования.
- •9.Временные ряды и их структура
- •14.Автокорреляция во временных рядах. Автокорреляционная функция.
- •19.Аналитические методы выявления неслучайной составляющей временного ряда. Модели кривых роста.
- •Методы механического сглаживания временных рядов. Метод простой скользящей средней.
- •34.Тренд-сезонные экономические процессы. Итерационные методы фильтрации
- •39.Адаптивные модели прогнозирования. Модель Брауна. (первый способ построения)
- •1 Способ строения модели Брауна
- •44.Модели и методы авторегресии. Ар-модели
- •49.Макроэкономические модели в прогнозировании.
- •Построение модели временного ряда
- •30. Билет. Процедура прогнозирования с использованием кривых роста, этапы и наиболее часто используемые кривые роста. Построение точечных и интервальных прогнозов.
- •35.Тренд-сезонные экономические процессы. Метод Четверикова.
- •40.Билет.Адаптивные модели прогнозирования. Модель Брауна. (второй способ построения)
- •45.Билет.Модели и методы авторегресии. Арma-модели.
- •1.Сущность социально-экономического прогнозирования, его предмет, объекты и основные формы предвидения
- •Интуитивные методы прогнозирования.
- •11.Требования, предъявляемые к исходной информации при моделировании экономических процессов на основе временных рядов.
- •Тренд. Критерии проверки наличия тренда во временном ряду, основанные на построении серий.
- •26.Методы механического сглаживания временных рядов. Метод эксполяционного сглаживания.
- •17 Предварительный анализ временных рядов: выявление аномальных наблюдений.
- •41.Адаптивные модели прогнозирования. Модель Хольта-Уитнерса.
- •31.Статистические показатели динамики экономических процессов, простейшие приёмы прогнозирования (планирования) от достигнутого уровня.
- •46. Модели и методы авторегресии. Арima-модели.
- •3. Типология прогнозов. Система социально-экономического прогнозирования
- •8. Экономико-математические, факторные и структурные модели в прогнозировании.
- •13. Количественные характеристики развития экономических процессов.
- •18. Методы выявления аномальных наблюдений. Метод Ирвина.
- •23. Методы выявления тенденции во временном ряду. Метод проверки разности средних уровней. Реализация в в ms Excel.
- •28. Оценка адекватности моделей. Критерий проверки
- •33. Тренд-сезонные экономические процессы и их анализ. Методы фильтрации компонент
- •38. Построение аддитивной модели тренд-сезонного экономического процесса.
- •48. Технология разработки прогнозов на пэвм с использованием специальных программ статистической обработки данных (ms Excel).
30. Билет. Процедура прогнозирования с использованием кривых роста, этапы и наиболее часто используемые кривые роста. Построение точечных и интервальных прогнозов.
На практике для описания тенденции развития явления широко используются модели кривых роста, представляющие собой различные функции времени y = f(t). При таком подходе изменении исследуемого показателя связывают лишь стечением времени; считается, что влияние других факторов не существенно или косвенно сказывается через фактор времени. Правильно выбранная модель кривой роста должна соответствовать характеру изменения тенденции исследуемого явления. Кривая роста позволяет получить выровненные или теоретические значения уровней динамического ряда. Этот е уровни, которые наблюдались бы в случае полного совпадения динамики явления с кривой. Прогнозирование на основе модели кривой роста базируется на экстраполяции, т. е. на продлении в будущее тенденции, наблюдавшейся в прошлом. При этом предполагается, что во временном ряду присутствует тренд, характер развития показателя обладает свойством инерционности, сложившаяся тенденция не должна претерпевать существенных изменений в течение периода упреждения.
Процедура разработки прогноза с использованием кривых роста включает в себя следующие этапы:
1) выбор одной или нескольких кривых, форма которых соответствует характеру изменения временного ряда;
2) оценка параметров выбранных кривых;
3) проверка адекватности выбранных кривых прогнозируемому процессу, оценка точности моделей и окончательный выбор кривой роста;
4) расчет точечного и интервального прогнозов.
В настоящее время в литературе описано несколько десятков кривых роста, многие из которых широко применяются для выравнивания экономических временных рядов. Кривые роста условно могут быть разделены на три класса в зависимости от того, какой тип динамики развития они хорошо описывают. К I типу относятся функции, используемые для описания процессов с монотонным характером тенденции развития и отсутствием пределов роста. Эти условия справедливы для многих экономических показателей, например, для большинства натуральных показателей промышленного производства. Ко II классу относятся кривые, описывающие процесс, который имеет предел роста в исследуемом периоде. С такими процессами часто сталкиваются в демографии, при изучении и потребностей в товарах и услугах (в расчете на душу населения), при исследовании и эффективности использования ресурсов и т.д. Примерами показателей, для которых могут быть указаны пределы роста, являются среднедушевое потребление определенных продуктов питания, расход удобрений на единицу площади и т.п.
Функции, относящиеся ко II классу, называются кривыми насыщения. Если кривые насыщения имеют точки перегиба, то они относятся к III типу кривых роста — к
S-образным кривым. Эти кривые описывают как бы два последовательных лавинообразных процесса (когда прирост зависит от уже достигнутого уровня): один с ускорением развития, другой— с замедлением. S-образные кривые находят применение в демографических исследованиях, в страховых расчетах, при решении задач прогнозирования научно-технического прогресса, при определении спроса на новый вид продукции.