
- •Вопрос1.Современные достижения и перспективы развития биологии.
- •Вопрос 2. Определение понятий «жизнь» и «живое»
- •Вопрос 3. Свойства живой материи. Уровни организации жизни
- •Вопрос 4.Гипотезы происхождения жизни на Земле.
- •Вопрос 5. Понятие о микро-, макроэлементах и органогенах
- •Вопрос 6. Углеводы: моно- и олигосахариды, полисахариды
- •Вопрос 7. Липиды, фосфолипиды, сфинголипиды. Строение клеточных мембран.
- •Вопрос 8. Белки и аминокислоты,структуры белков.
- •Вопрос 9. Ферменты,особенности биокатализа.Гормоны.
- •Вопрос 10. Нуклеотиды и нуклеиновые кислоты.
- •Вопрос 11. Основные положения клеточной теории
- •Вопрос 12. Вирусы. Многообразие вирусов, их особенности
- •Вопрос 13. Бактерии, особенности строения. Типы питания бактерий
- •Вопрос 14. Хемосинтез, азотфиксация
- •Вопрос 15. Строение клетки эукариот и прокариот
- •Вопрос 16.Понятие о тканях. Виды тканей живых организмов.
- •Вопрос 17. Общие представления о метаболизме, понятие катаболизма и анаболизма
- •Вопрос 18. Стадии катаболизма: гликолиз, брожение, клеточное дыхание
- •Вопрос 19. Цикл лимонной кислоты (цикл Кребса). Синтез атф
- •Вопрос 20. Стадии фотосинтеза. Значение фотосинтеза в биосфере
- •Вопрос 21. Ген, его определение и функции.
- •Вопрос 22. Структура генетического кода. Законы кода
- •Вопрос 23. Репликация днк, стадии этого процесса
- •Вопрос 24. Транскрипция. Экспрессия генов: трансляция и ее этапы
- •Вопрос 25. Клеточный цикл: интерфаза и митоз. Фазы митоза. Амитоз
- •Вопрос 26. Понятие о мейозе. Кроссинговер и его значение
- •Вопрос 27. Бесполое и половое размножение
- •Вопрос 28. Оплодотворение яйцеклетки, образование зиготы
- •Вопрос 29. Стадии дробления зиготы у позвоночных животных
- •Вопрос 30.Развитие экто-, энто- и мезодермы. Теория к. Бэра
- •Вопрос 31. Биогенетический закон Геккеля-Мюллера
- •Вопрос 33. Скорость и темпы роста. Типы роста. Кривые роста
- •Вопрос 34. Понятие о систематике, классификации и номенклатуре.
- •Вопрос 35. Царство растения: низшие и высшие растения, многообразие
- •Вопрос36.Царство: Животные
- •Вопрос 37. Управление развитием.
- •Вопрос 38. Клонирование: положительная и отрицательная стороны проблемы
- •Вопрос 39. Генная инженерия, конструирование генетических химер.
- •Вопрос 40. Биотехнология и ее значение для сельского хозяйства, экологии, химической промышленности, геологии
- •Вопрос 41. Основные положения теории ж.Б. Ламарка.
- •Вопрос 42. Основные положения теории ч. Дарвина
- •Вопрос 43. Синтетическая теория эволюции (стэ), значение трудов с.С. Четверикова.
- •Вопрос 44. Основные факторы и движущие силы эволюции
- •Вопрос 45. Популяция - элементарная единица эволюции
- •Вопрос 46.Адаптации, их виды и значение
- •Вопрос 47.Видообразование: симпатрическое и аллопатрическое
- •Вопрос 48.Микроэволюция и макроэволюция. Законы макроэволюции
- •Вопрос 49.Пути и направления макроэволюции
- •Вопрос 50.Этапы развития жизни в архее и протерозое
- •Вопрос 51 Развитие жизни в палеозое, мезозое и кайнозое
- •Вопрос 52 Этапы антропогенеза.
- •Вопрос 53 Предмет и задачи экологии. Среды жизни
- •Вопрос 54 Влияние экологических факторов. Закон ю. Либиха
- •Вопрос 55 Правило трех кардинальных точек, экологическая валентность
Вопрос 18. Стадии катаболизма: гликолиз, брожение, клеточное дыхание
В результате расщепления белков, жиров и углеводов в клетке образуются вещества, богатые энергией - прежде всего АТФ. Синтез АТФ происходит в митохондриях. В катаболизме различают три этапа.1. Пищеварения происходит чаще всего вне клеток, в пищеварительной полости. Белки при этом разлагаются при этом на аминокислоты, сложные углеводы - простые сахара, жиры - на жирные кислоты и глицерин. 2. Брожение происходит без участия кислорода (О2). На этом этапе продукты пищеварения поступают внутрь клеток. Важнейшая часть второго этапа катаболизма - гликолиз, расщепление глюкозы в отсутствие кислорода. Молекула глюкозы распадается на две молекулы молочной кислоты, а за счет выделенной энергии образуются две молекулы АТФ. У анаэробных (живущих в отсутствии кислорода) организмов гликолиз часто является основным источником энергии. У остальных организмов (включая животных и человека) гликолиз служит средством быстрого получения энергии при недостатке кислорода. 3. Дыхание происходит с участием кислорода (О2). В результате дыхания две молекулы молочной кислоты распадаются в конечном итоге на воду и углекислый газ и образуется 36 молекул АТФ. Легко видеть, что дыхание - значительно более энергетически выгодный процесс, дающий гораздо больше АТФ, чем брожение. Клеточное дыхание происходит в митохондриях.
Вопрос 19. Цикл лимонной кислоты (цикл Кребса). Синтез атф
Цикл Кребса: введение, биомедицинское значение
Цикл лимонной кислоты ( цикл Кребса , цикл трикарбоновых кислот ) представляет собой серию реакций, протекающих в митохондриях, в ходе которых осуществляются катаболизм ацетильных групп и высвобождение водородных эквивалентов; при окислении последних поставляется свободная энергия топливных ресурсов тканей ( Цикл Кребса: метаболическая карта ). Ацетильные группы находятся в составе ацетил-CoA (CH3 - CO-S - CoA, активного ацетата), тиоэфира кофермента A. В состав CoA входит витамин - пантотеновая кислота .
Биомедицинское значение
Главная функция цикла лимонной кислоты (ЦК) состоит в том, что он является общим конечным путем окисления углеводов, липидов и белков, поскольку в ходе метаболизма глюкоза , жирные кислоты и аминокислоты превращаются либо в ацетил-CoA , либо в промежуточные соединения рассматриваемого цикла. ЦК играет также главную роль в процессах глюконеогенез а, переаминирования , дезаминирования и липогенез а. Хотя ряд этих процессов протекает во многих тканях, печень - единственный орган, в котором идут все перечисленные процессы. Поэтому серьезные последствия вызывает повреждение большого числа клеток печени или замещение их соединительной тканью, как это имеет место при остром гепатит е или цирроз е соответственно. О жизненно важной роли ЦК свидетельствует и тот факт, что у человека почти неизвестны (или их вообще нет) генетически обусловленные изменения ферментов, катализирующих реакции цикла; вероятно, наличие таких нарушений несовместимо с нормальным развитием.
Синтез АТФ.
Аденозинтрифосфорная кислота -АТФ - обязательный энергетический компонент любой живой клетки. АТФ также нуклеотид, состоящий из азотистого основания аденина, сахара рибозы и трех остатков молекулы фосфорной кислоты. Это неустойчивая структура. В обменных процессах от нее последовательно отщепляются остатки фосфорной кислоты путем разрыва богатой энергией, но непрочной связи между вторым и третьим остатками фосфорной кислоты. Отрыв одной молекулы фосфорной кислоты сопровождается выделением около 40 кДж энергии. В этом случае АТФ переходит в аденозиндифосфорную кислоту (АДФ), а при дальнейшем отщеплении остатка фосфорной кислоты от АДФ образуется аденозинмонофосфорная кислота (АМФ).
АТФ синтезируется в митохондриях в несколько этапов. Первый из них - подготовительный - протекает ступенчато, с вовлечением на каждой ступени специфических ферментов. При этом сложные органические соединения расщепляются до мономеров: белки - до аминокислот, углеводы - до глюкозы, нуклеиновые кислоты - до нуклеотидов и т. д. Разрыв связей в этих веществах сопровождается выделением небольшого количества энергии. Образовавшиеся мономеры под действием других ферментов могут претерпеть дальнейший распад с образованием более простых веществ вплоть до диоксида углерода и воды.
I этап - подготовительный: сложные органические вещества под действием пищеварительных ферментов распадаются на простые, при этом выделяется только тепловая энергия.
• Белки ->аминокислоты
• Жиры-> глицерин и жирные кислоты
• Крахмал ->глюкоза
II этап-гликолиз (бескислородный): осуществляется в гиалоплазме, с мембранами не связан; в нем участвуют ферменты; расщеплению подвергается глюкоза.
У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение).
У других микроорганизмов гликолиз может завершаться образованием ацетона, уксусной кислоты и т, д. Во всех случаях распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. В ходе бескислородного расщепления глюкозы в виде химической связи в молекуле АТФ сохраняется 40% анергии, а остальная рассеивается в виде теплоты.
III этап-гидролиз (кислородный): осуществляется в митохондриях, связан с матриксом митохондрий и внутренней мембраной, в нем участвуют ферменты, расщеплению подвергается молочная кислота: СзН6Оз+ЗН20 -->3СО2+ 12Н. С02 (диоксид углерода) выделяется из митохондрий в окружающую среду. Атом водорода включается в цепь реакций, конечный результат которых - синтез АТФ. Эти реакции идут в такой последовательности:
1. Атом водорода Н с помощью ферментов-переносчиков поступает во внутреннюю мембрану митохондрий, образующую кристы, где он окисляется: Н-е-->H+
2. Протон водорода H+ (катион) выносится переносчиками на наружную поверхность мембраны крист. Для протонов эта мембрана непроницаема, поэтому они накапливаются в межмембранном пространстве, образуя протонный резервуар.
3. Электроны водорода e переносятся на внутреннюю поверхность мембраны крист и тут же присоединяются к кислороду с помощью фермента оксидазы, образуя отрицательно заряженный активный кислород (анион): O2 + е-->O2-
4. Катионы и анионы по обе стороны мембраны создают разноименно заряженное электрическое поле, и когда разность потенциалов достигнет 200 мВ, начинает действовать протонный канал. Он возникает в молекулах ферментов АТФ-синтетаз, которые встроены во внутреннюю мембрану, образующую кристы.
5. Через протонный канал протоны водорода H+ устремляются внутрь митохондрий, создавая высокий уровень энергии, большая часть которой идет на синтез АТФ из АДФ и Ф (АДФ+Ф-->АТФ), а протоны H+ взаимодействуют с активным кислородом, образуя воду и молекулярный 02:
( 4Н++202- -->2Н20+02)
Таким образом, О2, поступающий в митохондрии в процессе дыхания организма, необходим для присоединения протонов водорода Н. При его отсутствии весь процесс в митохондриях прекращается, так как электронно-транспортная цепь перестает функционировать. Общая реакция III этапа:
(2СзНбОз + 6Oз + 36АДФ + 36Ф ---> 6С02 + 36АТФ + +42Н20)
В результате расщепления одной молекулы глюкозы образуются 38 молекул АТФ: на II этапе - 2 АТФ и на III этапе - 36 АТФ. Образовавшиеся молекулы АТФ выходят за пределы митохондрии и участвуют во всех процессах клетки, где необходима энергия. Расщепляясь, АТФ отдает энергию (одна фосфатная связь заключает 40 кДж) и в виде АДФ и Ф (фосфата) возвращается в митохондрии.