Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
111111111111111.doc
Скачиваний:
0
Добавлен:
26.12.2019
Размер:
264.19 Кб
Скачать

9. Локальная теорема Муавра-Лапласа

Пусть 0< p <1 и величина   при n    ограничена. Тогда  .

На практике приближением Муавра-Лапласа пользуются при npq > 9.

Точность формулы   растет, как с ростом величин n и k, так и по мере приближения величин p и q к 0.5.

Интегральныя теорема Лапласа

Пусть производится п испытаний, в каждом из которых вероятность появления события А постоянна и равна р (0<p<1). Как вычислить вероятность Pn(k1, k2) того, что событие А появится в п испытаниях не менее k1 и не более k2 раз (для краткости будем говорить «от k1 до k2 раз»? На этот вопрос отвечает интегральная теорема Лапласа.

Теорема. (Интегральная теорема Лапласа). Если вероятность р наступления события А в каждом испытании постоянна и отлична от нуля и единицы, то вероятность Pn(k1, k2) того, что событие А появится в п испытаниях от k1 до k2 раз, приближенно равна определенному интегралу:

 - интегральная функция Лапласа.

14.

Геометрическое распределение. Дискретная случайная величина Х имеет геометрическое распределение, если ее возможные значения 0, 1, 2, ... , m, … , а вероятности этих значений:

          

где 0 < p < 1,  q = 1 – p ;  m = 0, 1, 2, ... .

Вероятности Рm для последовательных значений m образуют геометрическую прогрессию с первым членом р и знаменателем q, откуда и название «геометрическое распределение».

В качестве примера рассмотрим стрельбу по некоторой цели до первого попадания, причем вероятность попадания при каждом выстреле не зависит от результатов предыдущих выстрелов  и сохраняет постоянное значение р (0 < p < 1). Тогда количество произведенных выстрелов будет случайной величиной с геометрическим распределением вероятностей. 

Геометрическое распределение определяется одним параметром р. Cлучайная величина, подчиненная геометрическому закону распределения, имеет следующие основные числовые характеристики:

           

21.

Генеральная совокупность и выборка из нее

Основу статистического исследования составляет множество данных, полученных в результате измерения одного или нескольких признаков. Реально наблюдаемая совокупность объектов, статистически представленная рядом наблюдений  случайной величины  , является выборкой, а гипотетически существующая (домысливаемая) — генеральной совокупностью. Генеральная совокупность может быть конечной (число наблюдений N = const) или бесконечной (N = ∞), а выборка из генеральной совокупности — это всегда результат ограниченного ряда   наблюдений. Число наблюдений  , образующих выборку, называется объемом выборки. Если объем выборки   достаточно велик (n ) выборка считается большой, в противном случае она называется выборкой ограниченного объема. Выборка считается малой, если при измерении одномерной случайной величины   объем выборки не превышает 30 (n <= 30), а при измерении одновременно нескольких (k) признаков в многомерном пространстве отношение к k не превышает 10 (n/k < 10). Выборка образует вариационный ряд, если ее члены являются порядковыми статистиками, т. е. выборочные значения случайной величины Х упорядочены по возрастанию (ранжированы), значения же признака называются вариантами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]