
- •Ответы на электротехнику
- •1.Дать определения понятиям: электротехника, электрическая цепь, источник электрической энергии, приемник электрической энергии, передающий элемент.
- •2.Дать определения понятиям: постоянный и переменный электрический ток, эдс, напряжение.
- •3.Схема замещения, эквивалентная схема замещения.
- •4..Классификация электрических цепей. Активные и пассивные электрические цепи.
- •5.Резистивный элемент, индуктивность, емкость. Определение и обозначение на электрических схемах. Какая энергия образуется и как она находится.
- •6.Работа резистивного элемента в цепи постоянного тока. Привести схему и временные диаграммы.
- •7.Работа емкости в цепи постоянного тока. Привести схему и временные диаграммы.
- •8.Работа индуктивности в цепи постоянного тока. Привести схему и временные диаграммы.
- •9.Работа резистивного элемента в электрических цепях переменного тока. Какая мощность определяется и чему она равна за период. Привести схему и временные диаграммы.
- •10.Работа емкости в электрических цепях переменного тока. Какая мощность определяется и чему она равна за период. Привести схему и временные диаграммы.
- •11.Работа индуктивности в электрических цепях переменного тока. Какая мощность определяется и чему она равна за период. Привести схему и временные диаграммы.
- •12.Электрическая цепь переменного тока с последовательным соединением элементов r, l, c. Привести схему цепи и вывод закона Ома для нее.
- •13.Режимы работы цепи переменного тока с последовательным соединением элементов r, l, c. Какие свойства возникают в цепи при резонансе напряжений.
- •14.Какие мощности определяют при последовательном соединении элементов r, l, c? Что такое коэффициент мощности цепи и как его можно определить?
- •15.Электрическая цепь переменного тока с параллельным соединением элементов r, l, c. Привести схему цепи и вывод закона Ома для нее.
- •16.Режимы работы цепи переменного тока с параллельным соединением элементов r, l, c. Какие свойства возникают в цепи при резонансе тока?
- •17.Какие мощности определяют при параллельном соединении элементов r, l, c? Что такое коэффициент мощности цепи и как его можно определить?
- •18.Дать определения: трехфазная цепь, напряжение фазное и линейное, ток фазный и линейный. Какова роль нейтрального провода в четырехпроводной трехфазной цепи?
- •19.Свойства трехфазной цепи при соединении приемника «звездой». Привести схему.
- •20. Свойства трехфазной цепи при соединении приемников «треугольником». Привести схему.
- •21.Способы включения однофазных и трехфазных приемников в трехфазную четырехпроводную цепь. Привести схему.
- •22.Как определяется мощность трехфазной цепи при соединении приемников «звездой» и «треугольником». Заземление и зануление в трехфазных цепях.
- •23.Устройство и принцип действия двигателя постоянного тока.
- •24.Особенности и способы пуска двигателя постоянного тока.
- •25.Какими способами можно регулировать частоту вращения ротора двигателя постоянного тока?
- •26.Как осуществить реверсирование двигателя постоянного тока?
- •27.Что такое механическая и регулировочная характеристики двигателя постоянного тока?
- •28.Объясните устройство асинхронного двигателя и назначение основных узлов.
- •29.Объясните получение вращающегося мп.
- •30.Объясните принцип работы асинхронного двигателя.
- •31.Особенности и способы пуска асинхронного двигателя.
- •32.Какими способами можно регулировать частоту вращения асинхронного двигателя?
- •33.Что такое скольжение, как оно определяется и какова его роль в работе асинхронного двигателя?
- •34.Назначение и принцип действия трансформатора. Что такое коэффициент трансформации?
- •35.Какие потери мощности существуют в трансформаторе и как они определяются? Что такое внешняя характеристика трансформатора?
- •36.Электроника. Виды электроники. Устройства информационной электроники.
- •37.Основные виды преобразователей. Классификация элементов электроники.
- •38.Полупроводник. Электропроводимость полупроводников. Основные и не основные носители.
- •Механизм электрической проводимости
- •Носители заряда в полупроводниках
- •39.Донорные и акцепторные примеси. Их влияние на основные и не основные носители.
- •40.Полупроводниковые диоды. Принцип работы.
- •41.Выпрямители, их основные параметры. Однофазные однополупериодные выпрямители. Схема, принцип работы.
- •42.Однофазный двухполупериодный выпрямитель с выводом средней точки трансформатора. Схема, принцип работы.
- •43.Мостовой однофазный двухполупериодный выпрямитель. Схема, принцип работы.
- •44.Сглаживающие фильтры. Схемы и принцип работы.
- •Емкостной фильтр.
- •45.Транзистор. Назначение, схемы и принцип работы биполярных транзисторов.
34.Назначение и принцип действия трансформатора. Что такое коэффициент трансформации?
Назначение трансформатора. Трансформатором называется статический электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения той же частоты.
Трансформаторы позволяют значительно повысить напряжение, вырабатываемое источниками переменного тока, установленными на электрических станциях, и осуществить передачу электроэнергии на дальние расстояния при высоких напряжениях (110, 220, 500, 750 и 1150 кВ). Благодаря этому сильно уменьшаются потери энергии в проводах и обеспечивается возможность значительного уменьшения площади сечения проводов линий электропередачи.
форматоры бывают однофазные и трехфазные, двух- и многообмоточные.
Рис.
212. Схема включения однофазного
трансформатора
Принцип действия трансформатора. Действие трансформатора основано на явлении электромагнитной индукции. Простейший трансформатор состоит из стального магнитопровода 2 (рис. 212) и двух расположенных на нем обмоток 1 и 3. Обмотки выполнены из изолированного провода и электрически не связаны. К одной из обмоток подается электрическая энергия от источника переменного тока. Эту обмотку называют первичной. К другой обмотке, называемой вторичной, подключают потребители (непосредственно или через выпрямитель).
При подключении трансформатора к источнику переменного тока (электрической сети) в витках его первичной обмотки протекает переменный ток i1, образуя переменный магнитный поток Ф. Этот поток проходит по магнитопроводу трансформатора и, пронизывая витки первичной и вторичной обмоток, индуцирует в них переменные э. д. с. е1 и е2. Если к вторичной обмотке присоединен какой-либо приемник, то под действием э. д. с. е2 по ее цепи проходит ток i2.
Коэффициент трансформации- Отношение напряжения на зажимах двух обмоток в режиме холостого кода. Коэффициент трансформации является основной характеристикой трансформатора. Он показывает, насколько изменяются основные параметры электрического тока, после того как он проходит через это устройство. Когда коэффициент трансформации больше 1 – трансформатор называется понижающим, если меньше – повышающим.
,
,
где
,
— входное и выходное напряжения соответственно
,
— число витков первичной и вторичной обмоток
,
— токи в первичной и вторичной цепях трансформатора
35.Какие потери мощности существуют в трансформаторе и как они определяются? Что такое внешняя характеристика трансформатора?
Основными характеристиками трансформатора являются прежде всего напряжение обмоток и передаваемая трансформатором мощность. Передача мощности от одной обмотки к другой происходит электромагнитным путем, при этом часть мощности, поступающей к трансформатору из питающей электрической сети, теряется в трансформаторе. Потерянную часть мощности называют потерями.
Потери мощности в трансформаторах состоят из потерь активной ▲ Рх и потерь реактивной мощности ▲ Qх.
Потери активной мощности.
Они состоят из двух составляющих:
1) потерь,
идущих на нагревание обмоток
трансформатора ▲ Р,
зависящих от тока нагрузки,
2) потерь, идущих на нагревание стали ▲ Рст, не зависящих от тока нагрузки.
Полные
реактивные потери
где Rт - активное сопротивление (0м) обмоток трансформатора, определяемое по величине потерь в меди D Рх (кВт), мощности трансформатора Sном (кВА), номинальному напряжению Uном (кВ) обмотки трансформатора, присоединенной к рассчитываемой линии:
Потери реактивной мощности.
Они состоят из двух составляющих:
1) потерь,
вызванных рассеянием магнитного потока
в трансформаторе ▲Q,
зависящих от квадрата тока нагрузки,
2) потерь, идущих на намагничивание трансформатора ▲Qm , не зависящих от тока нагрузки, которые определяются током х.х.
При этом полные реактивные потери
где Хт - реактивное сопротивление обмоток трансформатора, определяемое напряжением короткого замыкания Uкз,% и сопротивлением Rт.
Внешняя характеристика- зависимость напряжения на вторичной обмотке трансформатора от тока нагрузки U2 = f(I2) при U1 = const и cos φ2 = const.